
Computing with infinite data via proofs

Helmut Schwichtenberg, Hideki Tsuiki and Franziskus Wiesnet
(with help by Quirin Scholl)

June 28, 2017

1 / 15

Signed Digit Representation of Reals

A real number x ∈ [−1, 1] can be wirtten as stream of signed digits

x =
∞∑
i=1

di
2i

= d1d2d3 . . .

where di ∈ Sd := {1, 0, 1}. We write coIx or x ∈ coI for “x has a SD
representation”.

Our goals are algorithms for the arithmetic functions especially the
arithmetic mean and the division.

2 / 15

Signed Digit Representation of Reals

A real number x ∈ [−1, 1] can be wirtten as stream of signed digits

x =
∞∑
i=1

di
2i

= d1d2d3 . . .

where di ∈ Sd := {1, 0, 1}. We write coIx or x ∈ coI for “x has a SD
representation”.

Our goals are algorithms for the arithmetic functions especially the
arithmetic mean and the division.

2 / 15

Signed Digit Representation of Reals

A real number x ∈ [−1, 1] can be wirtten as stream of signed digits

x =
∞∑
i=1

di
2i

= d1d2d3 . . .

where di ∈ Sd := {1, 0, 1}. We write coIx or x ∈ coI for “x has a SD
representation”.

Our goals are algorithms for the arithmetic functions especially the
arithmetic mean and the division.

2 / 15

Formalisation of the Signed Digit Representation

Reflection: If a real number x has an SD representation, there is a signed
digit d and a real number x ′ which also has a SD representation such
that x = d+x′

2 .
So we have the following elimination axiom of coI:

∀ncx .coIx → ∃d,x′

(
Sd d ∧ coIx ′ ∧ |x | ≤ 1 ∧ x =

x ′ + d

2

)
The SD representation of a real is an infinit list of signed digeds. The
datatyp of a stream is therefore

data Sd = SdL | SdM | SdR

data Str = Sd :~: Str

Using the elimination axiom coI corresponds to the application of the
destructor

strDestr :: Str -> (Sd, Str)

strDestr (d :~: str) = (d, str)

3 / 15

Formalisation of the Signed Digit Representation

Reflection: If a real number x has an SD representation, there is a signed
digit d and a real number x ′ which also has a SD representation such
that x = d+x′

2 .

So we have the following elimination axiom of coI:

∀ncx .coIx → ∃d,x′

(
Sd d ∧ coIx ′ ∧ |x | ≤ 1 ∧ x =

x ′ + d

2

)
The SD representation of a real is an infinit list of signed digeds. The
datatyp of a stream is therefore

data Sd = SdL | SdM | SdR

data Str = Sd :~: Str

Using the elimination axiom coI corresponds to the application of the
destructor

strDestr :: Str -> (Sd, Str)

strDestr (d :~: str) = (d, str)

3 / 15

Formalisation of the Signed Digit Representation

Reflection: If a real number x has an SD representation, there is a signed
digit d and a real number x ′ which also has a SD representation such
that x = d+x′

2 .
So we have the following elimination axiom of coI:

∀ncx .coIx → ∃d,x′

(
Sd d ∧ coIx ′ ∧ |x | ≤ 1 ∧ x =

x ′ + d

2

)

The SD representation of a real is an infinit list of signed digeds. The
datatyp of a stream is therefore

data Sd = SdL | SdM | SdR

data Str = Sd :~: Str

Using the elimination axiom coI corresponds to the application of the
destructor

strDestr :: Str -> (Sd, Str)

strDestr (d :~: str) = (d, str)

3 / 15

Formalisation of the Signed Digit Representation

Reflection: If a real number x has an SD representation, there is a signed
digit d and a real number x ′ which also has a SD representation such
that x = d+x′

2 .
So we have the following elimination axiom of coI:

∀ncx .coIx → ∃d,x′

(
Sd d ∧ coIx ′ ∧ |x | ≤ 1 ∧ x =

x ′ + d

2

)
The SD representation of a real is an infinit list of signed digeds. The
datatyp of a stream is therefore

data Sd = SdL | SdM | SdR

data Str = Sd :~: Str

Using the elimination axiom coI corresponds to the application of the
destructor

strDestr :: Str -> (Sd, Str)

strDestr (d :~: str) = (d, str)

3 / 15

Formalisation of the Signed Digit Representation

Reflection: If a real number x has an SD representation, there is a signed
digit d and a real number x ′ which also has a SD representation such
that x = d+x′

2 .
So we have the following elimination axiom of coI:

∀ncx .coIx → ∃d,x′

(
Sd d ∧ coIx ′ ∧ |x | ≤ 1 ∧ x =

x ′ + d

2

)
The SD representation of a real is an infinit list of signed digeds. The
datatyp of a stream is therefore

data Sd = SdL | SdM | SdR

data Str = Sd :~: Str

Using the elimination axiom coI corresponds to the application of the
destructor

strDestr :: Str -> (Sd, Str)

strDestr (d :~: str) = (d, str)

3 / 15

If we want to prove that a real number x has a SD representation, we
have to give an algorithm which provides the digeds of x .

The introduction axiom of coI is

∀ncx .Xx →

∀ncx
(
Xx → ∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

))
→ coIx .

strCoRec :: t -> (t -> (Sd, Either Str t)) -> Str

strCoRec t f = let (d, strt) = f t in d :~: case strt of

Left str -> str

Right t0 -> strCoRec t0 f

4 / 15

If we want to prove that a real number x has a SD representation, we
have to give an algorithm which provides the digeds of x .
The introduction axiom of coI is

∀ncx .Xx →

∀ncx
(
Xx → ∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

))
→ coIx .

strCoRec :: t -> (t -> (Sd, Either Str t)) -> Str

strCoRec t f = let (d, strt) = f t in d :~: case strt of

Left str -> str

Right t0 -> strCoRec t0 f

4 / 15

If we want to prove that a real number x has a SD representation, we
have to give an algorithm which provides the digeds of x .
The introduction axiom of coI is

∀ncx .Xx →

∀ncx
(
Xx → ∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

))
→ coIx .

strCoRec :: t -> (t -> (Sd, Either Str t)) -> Str

strCoRec t f = let (d, strt) = f t in d :~: case strt of

Left str -> str

Right t0 -> strCoRec t0 f

4 / 15

Lemma
Every real between −1 and 1 has a SD representation.

Proof.

We use the introduction axiom of coI with the predicate
Xx := ∃y (y = x ∧ −1 ≤ y ≤ 1) and have to prove:

∀ncx .∃y (y = x ∧ −1 ≤ y ≤ 1)→

∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

)
Let therefore x , y and x = y ∧ −1 ≤ y ≤ 1 be given. Define
〈as,M〉 := y then we distinguish the following three cases:
If as(2) ≤ − 1

4 it follows y ≤ 0 and therefore we define d := −1 and
x ′ := 2x + 1.
If as(2) ≥ 1

4 it follows y ≥ 0 and therefore we define d := 1 and
x ′ := 2x − 1.
Otherwise we get − 1

2 ≤ y ≤ 1
2 and define d := 0 and x ′ := 2x .

5 / 15

Lemma
Every real between −1 and 1 has a SD representation.

Proof. We use the introduction axiom of coI with the predicate
Xx := ∃y (y = x ∧ −1 ≤ y ≤ 1) and have to prove:

∀ncx .∃y (y = x ∧ −1 ≤ y ≤ 1)→

∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

)

Let therefore x , y and x = y ∧ −1 ≤ y ≤ 1 be given. Define
〈as,M〉 := y then we distinguish the following three cases:
If as(2) ≤ − 1

4 it follows y ≤ 0 and therefore we define d := −1 and
x ′ := 2x + 1.
If as(2) ≥ 1

4 it follows y ≥ 0 and therefore we define d := 1 and
x ′ := 2x − 1.
Otherwise we get − 1

2 ≤ y ≤ 1
2 and define d := 0 and x ′ := 2x .

5 / 15

Lemma
Every real between −1 and 1 has a SD representation.

Proof. We use the introduction axiom of coI with the predicate
Xx := ∃y (y = x ∧ −1 ≤ y ≤ 1) and have to prove:

∀ncx .∃y (y = x ∧ −1 ≤ y ≤ 1)→

∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

)
Let therefore x , y and x = y ∧ −1 ≤ y ≤ 1 be given. Define
〈as,M〉 := y then we distinguish the following three cases:

If as(2) ≤ − 1
4 it follows y ≤ 0 and therefore we define d := −1 and

x ′ := 2x + 1.
If as(2) ≥ 1

4 it follows y ≥ 0 and therefore we define d := 1 and
x ′ := 2x − 1.
Otherwise we get − 1

2 ≤ y ≤ 1
2 and define d := 0 and x ′ := 2x .

5 / 15

Lemma
Every real between −1 and 1 has a SD representation.

Proof. We use the introduction axiom of coI with the predicate
Xx := ∃y (y = x ∧ −1 ≤ y ≤ 1) and have to prove:

∀ncx .∃y (y = x ∧ −1 ≤ y ≤ 1)→

∃rd,x′

(
Sd d ∧ (coIx ′ ∨ Xx ′) ∧ |x | ≤ 1 ∧ x =

d + x ′

2

)
Let therefore x , y and x = y ∧ −1 ≤ y ≤ 1 be given. Define
〈as,M〉 := y then we distinguish the following three cases:
If as(2) ≤ − 1

4 it follows y ≤ 0 and therefore we define d := −1 and
x ′ := 2x + 1.
If as(2) ≥ 1

4 it follows y ≥ 0 and therefore we define d := 1 and
x ′ := 2x − 1.
Otherwise we get − 1

2 ≤ y ≤ 1
2 and define d := 0 and x ′ := 2x .

5 / 15

RealToStream :: Rea -> Str

RealToStream x0 = strCoRec x0 f where

f x1@(RealConstr rs m)

| rs (m 2) <= -1/4 = (SdL, Right (2*x1+1))

| rs (m 2) <= 1/4 = (SdM, Right (2*x1))

| otherwise = (SdR, Right (2*x1-1))

6 / 15

Theorem
If coIx and coIy , we also have coI x+y

2 .

Proof. Observation: From coIx and coIy we get d , e ∈ Sd and

x ′, y ′ ∈ coI such that x = d+x′

2 and y = e+y ′

2 . It follows

x + y

2
=

d+x′

2 + e+y ′

2

2
=

x ′ + y ′ + j

4

for some j ∈ {−2,−1, 0, 1, 2}.

7 / 15

Theorem
If coIx and coIy , we also have coI x+y

2 .

Proof. Observation: From coIx and coIy we get d , e ∈ Sd and

x ′, y ′ ∈ coI such that x = d+x′

2 and y = e+y ′

2 . It follows

x + y

2
=

d+x′

2 + e+y ′

2

2
=

x ′ + y ′ + j

4

for some j ∈ {−2,−1, 0, 1, 2}.

7 / 15

So it is sufficient to show that

P := {x + y + j

4
|x , y ∈ coI ∧ j ∈ {−2,−1, 0, 1, 2}} ⊆ coI

Let x+y+j
4 ∈ P and d , e ∈ Sd, x ′, y ′ ∈ coI with x = d+x′

2 and y = e+y ′

2 .

We define K : {−6, . . . , 6} → Sd and J : {−6, . . . , 6} → {−2,−1, 0, 1, 2}
such that 4K (a) + J(a) = a for all a ∈ {−6, . . . , 6}. Then we have:

x + y + j

4
=

d+x′

2 + e+y ′

2 + j

4
=

d + e + 2j + x ′ + y ′

8
=

4K (d + e + 2j) + J(d + e + 2j) + x ′ + y ′

8

=
K (d + e + 2j) + J(d+e+2j)+x′+y ′

4

2

8 / 15

So it is sufficient to show that

P := {x + y + j

4
|x , y ∈ coI ∧ j ∈ {−2,−1, 0, 1, 2}} ⊆ coI

Let x+y+j
4 ∈ P and d , e ∈ Sd, x ′, y ′ ∈ coI with x = d+x′

2 and y = e+y ′

2 .

We define K : {−6, . . . , 6} → Sd and J : {−6, . . . , 6} → {−2,−1, 0, 1, 2}
such that 4K (a) + J(a) = a for all a ∈ {−6, . . . , 6}. Then we have:

x + y + j

4
=

d+x′

2 + e+y ′

2 + j

4
=

d + e + 2j + x ′ + y ′

8
=

4K (d + e + 2j) + J(d + e + 2j) + x ′ + y ′

8

=
K (d + e + 2j) + J(d+e+2j)+x′+y ′

4

2

8 / 15

So it is sufficient to show that

P := {x + y + j

4
|x , y ∈ coI ∧ j ∈ {−2,−1, 0, 1, 2}} ⊆ coI

Let x+y+j
4 ∈ P and d , e ∈ Sd, x ′, y ′ ∈ coI with x = d+x′

2 and y = e+y ′

2 .

We define K : {−6, . . . , 6} → Sd and J : {−6, . . . , 6} → {−2,−1, 0, 1, 2}
such that 4K (a) + J(a) = a for all a ∈ {−6, . . . , 6}.

Then we have:

x + y + j

4
=

d+x′

2 + e+y ′

2 + j

4
=

d + e + 2j + x ′ + y ′

8
=

4K (d + e + 2j) + J(d + e + 2j) + x ′ + y ′

8

=
K (d + e + 2j) + J(d+e+2j)+x′+y ′

4

2

8 / 15

So it is sufficient to show that

P := {x + y + j

4
|x , y ∈ coI ∧ j ∈ {−2,−1, 0, 1, 2}} ⊆ coI

Let x+y+j
4 ∈ P and d , e ∈ Sd, x ′, y ′ ∈ coI with x = d+x′

2 and y = e+y ′

2 .

We define K : {−6, . . . , 6} → Sd and J : {−6, . . . , 6} → {−2,−1, 0, 1, 2}
such that 4K (a) + J(a) = a for all a ∈ {−6, . . . , 6}. Then we have:

x + y + j

4
=

d+x′

2 + e+y ′

2 + j

4
=

d + e + 2j + x ′ + y ′

8
=

4K (d + e + 2j) + J(d + e + 2j) + x ′ + y ′

8

=
K (d + e + 2j) + J(d+e+2j)+x′+y ′

4

2

8 / 15

k n | n > 2 = 1

| n < -2 = -1

| otherwise = 0

j 6 = 2 j 5 = 1 j 4 = 0 j 3 = -1 j 2 = 2

j 1 = 1 j 0 = 0 j (-1) = -1

j (-2) = -2 j (-3) = 1 j (-4) = 0 j (-5) = -1 j (-6) = -2

step :: (Int, Str, Str) -> (Sd, Either Str (Int, Str, Str))

step (t, d :~: u, e :~: v) =

(toEnum (k num), Right (j num, u, v))

where num = fromEnum d + fromEnum e + 2*t

cCoIAverage :: Str -> Str -> Str

cCoIAverage (d :~: u) (e :~: v) =

strCoRec (fromEnum d + fromEnum e, u, v) step

9 / 15

Lemma

∀ncx .coIx → |x | ≤ 1

2
→ coI(2x)

Proof. Because of coIx we have x ′ ∈ coI and d ∈ Sd such that x = d+x′

2 .
case differentiation by d :
If d = 0 we are done, because then 2x = x ′ ∈ coI.
The cases d = 1 and d = −1 are almost similar so we just consider
d = −1.
Here we have 2x = −1 + x ′ and x ′ ≥ 0.

10 / 15

Lemma

∀ncx .coIx → |x | ≤ 1

2
→ coI(2x)

Proof. Because of coIx we have x ′ ∈ coI and d ∈ Sd such that x = d+x′

2 .
case differentiation by d :

If d = 0 we are done, because then 2x = x ′ ∈ coI.
The cases d = 1 and d = −1 are almost similar so we just consider
d = −1.
Here we have 2x = −1 + x ′ and x ′ ≥ 0.

10 / 15

Lemma

∀ncx .coIx → |x | ≤ 1

2
→ coI(2x)

Proof. Because of coIx we have x ′ ∈ coI and d ∈ Sd such that x = d+x′

2 .
case differentiation by d :
If d = 0 we are done, because then 2x = x ′ ∈ coI.

The cases d = 1 and d = −1 are almost similar so we just consider
d = −1.
Here we have 2x = −1 + x ′ and x ′ ≥ 0.

10 / 15

Lemma

∀ncx .coIx → |x | ≤ 1

2
→ coI(2x)

Proof. Because of coIx we have x ′ ∈ coI and d ∈ Sd such that x = d+x′

2 .
case differentiation by d :
If d = 0 we are done, because then 2x = x ′ ∈ coI.
The cases d = 1 and d = −1 are almost similar so we just consider
d = −1.
Here we have 2x = −1 + x ′ and x ′ ≥ 0.

10 / 15

Therefore we show (CoIPosToCoIMinusOne):

∀ncy .coIy → y ≥ 0→ coI(y − 1)

Again we get y ′ ∈ coI and e ∈ Sd such that y = e+y ′

2 and we do case
differentiation by e:

If e = 1 we get y − 1 = 1+y ′

2 − 1 = −1+y ′

2 ∈ coI

If e = 0 we get y − 1 = −1+(y ′−1)
2 and also y ′ ≤ 0.

If e = −1 then y ′ = 1 must hold and then y − 1 = −1 ∈ coI.

11 / 15

Therefore we show (CoIPosToCoIMinusOne):

∀ncy .coIy → y ≥ 0→ coI(y − 1)

Again we get y ′ ∈ coI and e ∈ Sd such that y = e+y ′

2 and we do case
differentiation by e:

If e = 1 we get y − 1 = 1+y ′

2 − 1 = −1+y ′

2 ∈ coI

If e = 0 we get y − 1 = −1+(y ′−1)
2 and also y ′ ≤ 0.

If e = −1 then y ′ = 1 must hold and then y − 1 = −1 ∈ coI.

11 / 15

Therefore we show (CoIPosToCoIMinusOne):

∀ncy .coIy → y ≥ 0→ coI(y − 1)

Again we get y ′ ∈ coI and e ∈ Sd such that y = e+y ′

2 and we do case
differentiation by e:

If e = 1 we get y − 1 = 1+y ′

2 − 1 = −1+y ′

2 ∈ coI

If e = 0 we get y − 1 = −1+(y ′−1)
2 and also y ′ ≤ 0.

If e = −1 then y ′ = 1 must hold and then y − 1 = −1 ∈ coI.

11 / 15

cCoIPosToCoIMinusOne u0 = strCoRec u0 f where

f (SdR :~: u2) = (SdL, Left u2)

f (SdM :~: u2) = (SdL, Right u2)

f (SdL :~: u2) = (SdL, Left

(strCoRec (RealConstr (const ((-1) :#: One)) (const Zero))

((SdL ,) . Right)))

cCoIToCoIDouble :: Str -> Str

cCoIToCoIDouble u0 = let (s1 :~: u1) = u0 in case s1 of

SdR -> cCoINegToCoIPlusOne u1

SdM -> u1

SdL -> cCoIPosToCoIMinusOne u1

12 / 15

Theorem

∀ncx,y .coIx → coIy → 1

4
≤ y → |x | ≤ y → coI

x

y

Proof. We distinguish the following cases:

If x = 1x̃ , x = 01x̃ or x = 001x̃ we have x ≥ 0 and x
y =

1+ x′
y

2 where

x ′ := 4
x− y

2

2 = 2 · 2 x+0::(−y)
2 (CoIDivSatCoIClAux1).

If x = 1x̃ , x = 01x̃ or x = 001x̃ we have x ≤ 0 and x
y =

−1+ x′
y

2 where

x ′ := 4
x+ y

2

2 = 2 · 2 x+0::y
2 (CoIDivSatCoIClAux4).

If x = 000x̃ we have |2x | ≤ 2 1
8 ≤ y and x

y =
0+ x′

y

2 where x ′ = 2x .

In each case it is clear, that |x ′| ≤ y and so we just have to show coIx ′.
This follows from the last lemma and the last theorem.

13 / 15

Theorem

∀ncx,y .coIx → coIy → 1

4
≤ y → |x | ≤ y → coI

x

y

Proof. We distinguish the following cases:

If x = 1x̃ , x = 01x̃ or x = 001x̃ we have x ≥ 0 and x
y =

1+ x′
y

2 where

x ′ := 4
x− y

2

2 = 2 · 2 x+0::(−y)
2 (CoIDivSatCoIClAux1).

If x = 1x̃ , x = 01x̃ or x = 001x̃ we have x ≤ 0 and x
y =

−1+ x′
y

2 where

x ′ := 4
x+ y

2

2 = 2 · 2 x+0::y
2 (CoIDivSatCoIClAux4).

If x = 000x̃ we have |2x | ≤ 2 1
8 ≤ y and x

y =
0+ x′

y

2 where x ′ = 2x .

In each case it is clear, that |x ′| ≤ y and so we just have to show coIx ′.
This follows from the last lemma and the last theorem.

13 / 15

Theorem

∀ncx,y .coIx → coIy → 1

4
≤ y → |x | ≤ y → coI

x

y

Proof. We distinguish the following cases:

If x = 1x̃ , x = 01x̃ or x = 001x̃ we have x ≥ 0 and x
y =

1+ x′
y

2 where

x ′ := 4
x− y

2

2 = 2 · 2 x+0::(−y)
2 (CoIDivSatCoIClAux1).

If x = 1x̃ , x = 01x̃ or x = 001x̃ we have x ≤ 0 and x
y =

−1+ x′
y

2 where

x ′ := 4
x+ y

2

2 = 2 · 2 x+0::y
2 (CoIDivSatCoIClAux4).

If x = 000x̃ we have |2x | ≤ 2 1
8 ≤ y and x

y =
0+ x′

y

2 where x ′ = 2x .

In each case it is clear, that |x ′| ≤ y and so we just have to show coIx ′.
This follows from the last lemma and the last theorem.

13 / 15

cCoIDiv u0 u1 = strCoRec u0 func where

func u2@(d :~: e :~: f :~: _) =

case d of

SdR -> (SdR, Right (cCoIDivSatCoIClAux1 u2 u1))

SdL -> (SdL, Right (cCoIDivSatCoIClAux4 u2 u1))

SdM -> case e of

SdR -> (SdR, Right (cCoIDivSatCoIClAux1 u2 u1))

SdL -> (SdL, Right (cCoIDivSatCoIClAux4 u2 u1))

SdM -> case f of

SdR -> (SdR, Right (cCoIDivSatCoIClAux1 u2 u1))

SdL -> (SdL, Right (cCoIDivSatCoIClAux4 u2 u1))

SdM -> (SdM, Right (cCoIToCoIDouble u2))

cCoIDivSatCoIClAux1 u0 u1 = cCoIToCoIDouble $ cCoIToCoIDouble $

cCoIAverage u0 $ cCoIUMinus $ strCoRec (SdM, u1) f where

f (s, u) = (s, Left u)

cCoIDivSatCoIClAux4 u0 u1 = cCoIToCoIDouble $ cCoIToCoIDouble $

cCoIAverage u0 $ strCoRec (SdM, u1) f where

f (s, u) = (s, Left u)

14 / 15

Conclusion

We have constructed a SD representation of x+y
2 and x

y out of the SD
representation from x and y .

With the SD representation we can do exact real arithmetic simpler than
with the binary representation.

To get finitly many digits of the output we just need finitly many digits
of the input independet of the value of the imput.

15 / 15

