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The N-body problem

The N-body problem is the problem of predicting the motion of N objects
under their mutual gravitational attraction.
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Equations of Motion
3N-dim. 2nd order ODE system:

i (1) — m;mi(qi(t) — qi(t))
O =2 ) - aoP

The system can equivalently be written as a 6 N-dimensional system of
first-order ordinary differential equations.




N-body simulation

Problem

Given initial values q, ...,
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The N-body problem

For N = 2 the system can be solved analytically.
For N > 3 no analytical solution.
For N = 3 all singularities are collisions.

In 1912 Karl Sundman found a (nearly) general solution for N = 3 in
terms of a convergent power series expansion.

By a applying a transformation of variables, he could find a power
series that converges for all time.

The solution was later extended to N bodies by Wang Qiu-Dong.

However, the solution is not useful for computations as it converges
extremely slowly
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Local solution

o
oy e Me(gr(t) — qi(t)) 3 r,
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@ We can find the power series of the solution around tg
o If Hq,-(t) — q,'(to)H < £ it holds r,-u-(t) > é and Hq,(t)H < AMr—2
o Cauchy’s existence theorem: |t — ty| < W.

e For |t —tg| < %’ it is suffices to sum O(n) coefficients.



a~collision

Assume q(t), v(t) ¢ N(«a) for
t € [0,1] then g(t) can be computed

in time poly(n+ 1/a).
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Discrete average case complexity

Worst-case complexity max{ T 4(x) : x € {0,1}"} can depend on only
a few instances

More realistic: expected time over random inputs of length n

Naive idea: T4(n) = Ep {Ta(x) : x € {0,1}"}

Not robust w.r.t to polynomial slowdown

More robust definition (Levin): Epn{w . |x] < n} bounded.
Polynomial time on average: Probability of time longer than T is less

poly(n)
than ==.




Average case complexity of real functions

Definition (Average Case Polynomial Time)
Ta(x,n) ;== max{Ta((am)men, n)) : am converges quickly to x}
Polynomial average time: | TA(X ") dx bounded.
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Average case complexity for the N-body problem

@ Recall a-collision: Two particles are a-close to each other

@ How likely is an a-collision?

Definition

The set B(a) C R%" is defined as the set of points (qo, ) such that
@ (qo, v) is an initial condition at time t =0
@ There is an i # j such that |g;(t) — qj(t)| < a for some t € [0, 1].

@ What is the Lebesgue measure of this subset?

@ Saari: The set of initial values leading to collisions for N < 4 has
measure 0.
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Definition

A Hamiltonian system is a dynamical system where the evolution over time
is described by 2n first order ordinary differential equations of the form
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for a smooth real-valued function H(t, g, p) called the Hamiltonian.
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Hamiltonian systems

Definition
A Hamiltonian system is a dynamical system where the evolution over time
is described by 2n first order ordinary differential equations of the form

_on . oH

for a smooth real-valued function H(t, g, p) called the Hamiltonian.

Theorem (Liouville)

Let o be a Hamiltonian system and A a set of inital conditions then

/dz:/ dz.
A wt(A)
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The N-body problem in Hamiltonian form

The Hamiltonian for the N-body problem is

n
B | pil| m;m;
)= w2 Ta— gl

! 1<i<j qi — 4l

with g, p € R3. H is constant over time.
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The N-body problem in Hamiltonian form

The Hamiltonian for the N-body problem is

n
B | pil| m;m;
)= w2 Ta— gl

! 1<i<j qi — 4l

with g, p € R3. H is constant over time.

Basic Idea

@ Show that the subset of phase space where two particles are close to
each other is small.

@ Apply Lioville’s theorem and show that the corresponding set of initial
values is small.
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Restricting the problem

Planar Circular Restricted Three-body problem
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The planar circular restricted three-body problem

Normalization

e 1 €[0,0.5]

m=1—pu

mz = [

Position of my: (—u,0)
Position of my: (1 — p,0)
= (g +pn)°+

3= (@ —1+p)?+a3

(ql,qQ).

13



The planar circular restricted three-body problem

Hamiltonian
The Hamiltonian of the planar restricted three body problem is
pool—p

1
H(p. a) = 5 llplI* + q2p1 — G1p2 — T
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The planar circular restricted three-body problem

Hamiltonian
The Hamiltonian of the planar restricted three body problem is
pool—p

1
H(p. a) = 5 llplI* + q2p1 — G1p2 — T

Planar restricted three body simulation
e 4 € [0,0.5] fixed
e A C R?* the set of initial values (p, q) such that H(p,q) < 1 and
lqll < 1.

e Goal: map (p,q) € Aand t € [0,1] to g(t).

14



N(a) C R*
o A(N(a)) < 8712a?

15



a~collisions

Proof Sketch.

@ Change coordinates such that (—u,0) is at the origin
@ Parameterize phase space by ® : (H,r,p, 1))
e Ni(e) C d(G) for G :=[-1,1] x [0,a] x [0,27) x [0, 27)

15



Retracting to Initial Values

e Bi(a): Initial conditions ending
up in N(a) at time t.

q(0)
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Retracting to Initial Values

e Bi(a): Initial conditions ending
up in N(a) at time t.

@ By Liouville's theorem
A(Bi(@)) = A(N(@)).

° B(a) C Ute[o,l] Bt(«)

\\\\a q(t)‘ a,l/
Ni(a) Na(ar)
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Measure of B(«)

o N'(a) := N(2a)\ N(a)
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Measure of B(«)

Theorem

o N'(a) := N(2a)\ N(a)

@ Speed bounded: |v|| < \/ia

e Time in N'(«) at least #.

© B(0) € Usexaoss B(20)

For the measure of initial values leading to an a-collisions in [0, 1] it holds

A(B(a)) < 64m2alS.
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Average case complexity

Polynomial average time: [ de bounded.
x ¢ B(a) = T(x,n) € O((n+ 1)m
A(B(a)) < 64m2alS

For randomly selected initial values: P(x € B(a)) < 8al?.

By a similar argument as before one can show that A(A) > 872.
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Average case complexity

o Polynomial average time: [ de bounded.
o x ¢ B(a) = T(x,n) € O((n+ L))
o \(B(a)) < 64r2als

@ By a similar argument as before one can show that A\(A) > 872,

@ For randomly selected initial values: P(x € B(a)) < 8al®.

Theorem

Simulating the planar circular restricted three-body problem can be done in
polynomial time on average.
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Conclusion / Future Work

@ Subset of phase space corresponding to a-collisions has to go to zero
for « — 0

19



Conclusion / Future Work

@ Subset of phase space corresponding to a-collisions has to go to zero
for « — 0

@ Extension to the spatial case straight forward

19



Conclusion / Future Work

@ Subset of phase space corresponding to a-collisions has to go to zero
for « — 0

@ Extension to the spatial case straight forward

@ How about the general N-body or other systems?
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