Average-case complexity for the restricted three-body problem ¹

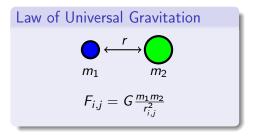
Akitoshi Kawamura, Holger Thies, Martin Ziegler

June 27, 2017

¹The authors thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) and JSPS Kakenhi Project 2670000 for supporting the research.

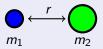
The N-body problem is the problem of predicting the motion of N objects under their mutual gravitational attraction.

The N-body problem is the problem of predicting the motion of N objects under their mutual gravitational attraction.



The N-body problem is the problem of predicting the motion of N objects under their mutual gravitational attraction.

Law of Universal Gravitation



$$F_{i,j} = G \frac{m_1 m_2}{r_{i,j}^2}$$

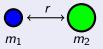
Equations of Motion

3N-dim. 2nd order ODE system:

$$m_i \ddot{q}_i(t) = \sum_{k \neq i} \frac{m_i m_k (q_k(t) - q_i(t))}{|q_k(t) - q_i(t)|^3}$$

The N-body problem is the problem of predicting the motion of N objects under their mutual gravitational attraction.

Law of Universal Gravitation



$$F_{i,j} = G \frac{m_1 m_2}{r_{i,j}^2}$$

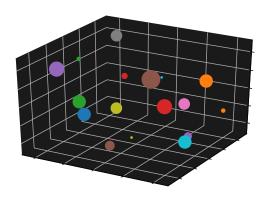
Equations of Motion

3N-dim. 2nd order ODE system:

$$m_i \ddot{q}_i(t) = \sum_{k \neq i} \frac{m_i m_k (q_k(t) - q_i(t))}{|q_k(t) - q_i(t)|^3}$$

The system can equivalently be written as a 6N-dimensional system of first-order ordinary differential equations.

N-body simulation



Problem

Given initial values $q_1, \ldots, q_N, v_1, \ldots, v_N$ and time t compute q(t), v(t).

3

• For N=2 the system can be solved analytically.

- For N = 2 the system can be solved analytically.
- For $N \ge 3$ no analytical solution.

- For N = 2 the system can be solved analytically.
- For $N \ge 3$ no analytical solution.
- For N = 3 all singularities are collisions.

- For N = 2 the system can be solved analytically.
- For $N \ge 3$ no analytical solution.
- For N = 3 all singularities are collisions.
- In 1912 Karl Sundman found a (nearly) general solution for ${\it N}=3$ in terms of a convergent power series expansion.

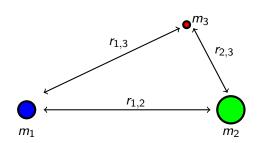
- For N = 2 the system can be solved analytically.
- For $N \ge 3$ no analytical solution.
- For N = 3 all singularities are collisions.
- In 1912 Karl Sundman found a (nearly) general solution for N=3 in terms of a convergent power series expansion.
- By a applying a transformation of variables, he could find a power series that converges for all time.

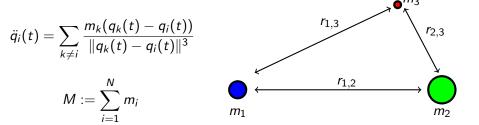
- For N=2 the system can be solved analytically.
- For $N \ge 3$ no analytical solution.
- For N = 3 all singularities are collisions.
- In 1912 Karl Sundman found a (nearly) general solution for N=3 in terms of a convergent power series expansion.
- By a applying a transformation of variables, he could find a power series that converges for all time.
- The solution was later extended to N bodies by Wang Qiu-Dong.

- For N=2 the system can be solved analytically.
- For $N \ge 3$ no analytical solution.
- For N = 3 all singularities are collisions.
- In 1912 Karl Sundman found a (nearly) general solution for ${\it N}=3$ in terms of a convergent power series expansion.
- By a applying a transformation of variables, he could find a power series that converges for all time.
- The solution was later extended to N bodies by Wang Qiu-Dong.
- However, the solution is not useful for computations as it converges extremely slowly

$$\ddot{q}_i(t) = \sum_{k \neq i} \frac{m_k(q_k(t) - q_i(t))}{\|q_k(t) - q_i(t)\|^3}$$

$$M:=\sum_{i=1}^N m_i$$





ullet We can find the power series of the solution around t_0

$$\ddot{q}_{i}(t) = \sum_{k \neq i} \frac{m_{k}(q_{k}(t) - q_{i}(t))}{\|q_{k}(t) - q_{i}(t)\|^{3}}$$

$$M := \sum_{i=1}^{N} m_{i}$$

$$m_{1}$$

- ullet We can find the power series of the solution around t_0
- If $\|q_i(t)-q_i(t_0)\|\leq rac{r}{4}$ it holds $r_{i,j}(t)\geq rac{r}{2}$ and $\|\ddot{q}_i(t)\|\leq 4Mr^{-2}$

$$\ddot{q}_{i}(t) = \sum_{k \neq i} \frac{m_{k}(q_{k}(t) - q_{i}(t))}{\|q_{k}(t) - q_{i}(t)\|^{3}}$$

$$M := \sum_{i=1}^{N} m_{i}$$

$$m_{1}$$

$$r_{1,3}$$

$$r_{1,3}$$

$$r_{1,2}$$

$$m_{2}$$

- ullet We can find the power series of the solution around t_0
- If $||q_i(t) q_i(t_0)|| \le \frac{r}{4}$ it holds $r_{i,j}(t) \ge \frac{r}{2}$ and $||\ddot{q}_i(t)|| \le 4Mr^{-2}$
- Cauchy's existence theorem: $|t-t_0|<rac{r^3}{(N+1)16M}$.

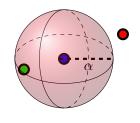
$$\ddot{q}_{i}(t) = \sum_{k \neq i} \frac{m_{k}(q_{k}(t) - q_{i}(t))}{\|q_{k}(t) - q_{i}(t)\|^{3}}$$

$$M := \sum_{i=1}^{N} m_{i}$$

$$m_{1}$$

- ullet We can find the power series of the solution around t_0
- If $\|q_i(t)-q_i(t_0)\|\leq rac{r}{4}$ it holds $r_{i,j}(t)\geq rac{r}{2}$ and $\|\ddot{q}_i(t)\|\leq 4Mr^{-2}$
- Cauchy's existence theorem: $|t-t_0|<rac{r^3}{(N+1)16M}$.
- For $|t-t_0| \le \frac{r'}{2}$ it is suffices to sum O(n) coefficients.

lpha-collision



Assume $q(t), v(t) \notin N(\alpha)$ for $t \in [0,1]$ then q(t) can be computed in time $poly(n+1/\alpha)$.

• Worst-case complexity $\max\{T_{\mathcal{A}}(x):x\in\{0,1\}^n\}$ can depend on only a few instances

- Worst-case complexity $\max\{T_{\mathcal{A}}(x):x\in\{0,1\}^n\}$ can depend on only a few instances
- \bullet More realistic: expected time over random inputs of length n

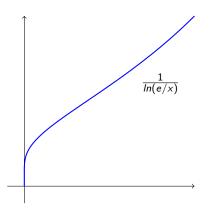
- Worst-case complexity $\max\{T_{\mathcal{A}}(x): x \in \{0,1\}^n\}$ can depend on only a few instances
- ullet More realistic: expected time over random inputs of length n
- Naive idea: $T_{\mathcal{A}}(n) = E_{P_n} \{ T_{\mathcal{A}}(x) : x \in \{0,1\}^n \}$

- Worst-case complexity $\max\{T_{\mathcal{A}}(x): x \in \{0,1\}^n\}$ can depend on only a few instances
- More realistic: expected time over random inputs of length n
- Naive idea: $T_{\mathcal{A}}(n) = E_{P_n} \{ T_{\mathcal{A}}(x) : x \in \{0,1\}^n \}$
- Not robust w.r.t to polynomial slowdown

- Worst-case complexity $\max\{T_{\mathcal{A}}(x): x \in \{0,1\}^n\}$ can depend on only a few instances
- More realistic: expected time over random inputs of length n
- Naive idea: $T_A(n) = E_{P_n} \{ T_A(x) : x \in \{0, 1\}^n \}$
- Not robust w.r.t to polynomial slowdown
- More robust definition (Levin): $E_{P_n}\left\{\frac{T_A(x)^{\varepsilon}}{n}: |x| \leq n\right\}$ bounded.

- Worst-case complexity $\max\{T_{\mathcal{A}}(x): x \in \{0,1\}^n\}$ can depend on only a few instances
- More realistic: expected time over random inputs of length n
- Naive idea: $T_{\mathcal{A}}(n) = E_{P_n} \{ T_{\mathcal{A}}(x) : x \in \{0,1\}^n \}$
- Not robust w.r.t to polynomial slowdown
- More robust definition (Levin): $E_{P_n}\left\{\frac{T_A(x)^{\varepsilon}}{n}: |x| \leq n\right\}$ bounded.
- Polynomial time on average: Probability of time longer than T is less than $\frac{poly(n)}{T^{\varepsilon}}$.

Average case complexity of real functions



Definition (Average Case Polynomial Time)

 $T_A(x,n) := \max\{T_A((a_m)_{m \in \mathbb{N}},n)\}: a_m \text{ converges quickly to } x\}$ Polynomial average time: $\int \frac{T_A(x,n)^\varepsilon}{n} dx$ bounded.

- ullet Recall lpha-collision: Two particles are lpha-close to each other
- How likely is an α -collision?

- Recall α -collision: Two particles are α -close to each other
- How likely is an α -collision?

Definition

The set $B(\alpha) \subseteq \mathbb{R}^{6n}$ is defined as the set of points (q_0, v_0) such that

- (q_0, v_0) is an initial condition at time t = 0
- ② There is an $i \neq j$ such that $|q_i(t) q_i(t)| \leq \alpha$ for some $t \in [0, 1]$.

- Recall α -collision: Two particles are α -close to each other
- How likely is an α -collision?

Definition

The set $B(\alpha) \subseteq \mathbb{R}^{6n}$ is defined as the set of points (q_0, v_0) such that

- (q_0, v_0) is an initial condition at time t = 0
- ② There is an $i \neq j$ such that $|q_i(t) q_i(t)| \leq \alpha$ for some $t \in [0, 1]$.
 - What is the Lebesgue measure of this subset?

- Recall α -collision: Two particles are α -close to each other
- How likely is an α -collision?

Definition

The set $B(\alpha) \subseteq \mathbb{R}^{6n}$ is defined as the set of points (q_0, v_0) such that

- (q_0, v_0) is an initial condition at time t = 0
- ② There is an $i \neq j$ such that $|q_i(t) q_i(t)| \leq \alpha$ for some $t \in [0, 1]$.
 - What is the Lebesgue measure of this subset?
 - Saari: The set of initial values leading to collisions for $N \le 4$ has measure 0.

Hamiltonian systems

Definition

A Hamiltonian system is a dynamical system where the evolution over time is described by 2n first order ordinary differential equations of the form

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$

for a smooth real-valued function H(t, q, p) called the Hamiltonian.

Hamiltonian systems

Definition

A Hamiltonian system is a dynamical system where the evolution over time is described by 2n first order ordinary differential equations of the form

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$

for a smooth real-valued function H(t, q, p) called the *Hamiltonian*.

Theorem (Liouville)

Let φ be a Hamiltonian system and A a set of inital conditions then

$$\int_A dz = \int_{\varphi_t(A)} dz.$$

The N-body problem in Hamiltonian form

The Hamiltonian for the N-body problem is

$$H(q,p) = \sum_{i=1}^{n} \frac{\|p_i\|^2}{2m_i} - \sum_{1 \le i \le j} \frac{m_i m_j}{\|q_i - q_j\|}$$

with $q, p \in \mathbb{R}^3$. *H* is constant over time.

The N-body problem in Hamiltonian form

The Hamiltonian for the N-body problem is

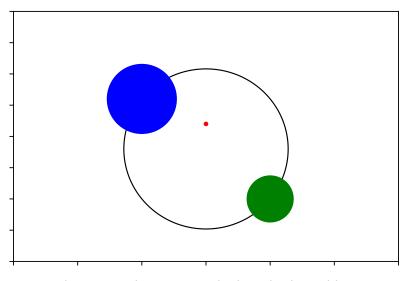
$$H(q,p) = \sum_{i=1}^{n} \frac{\|p_i\|^2}{2m_i} - \sum_{1 \le i \le j} \frac{m_i m_j}{\|q_i - q_j\|}$$

with $q, p \in \mathbb{R}^3$. *H* is constant over time.

Basic Idea

- Show that the subset of phase space where two particles are close to each other is small.
- Apply Lioville's theorem and show that the corresponding set of initial values is small.

Restricting the problem

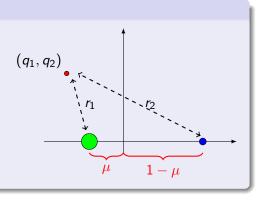


Planar Circular Restricted Three-body problem

The planar circular restricted three-body problem

Normalization

- $\mu \in [0, 0.5]$
- $m_1 = 1 \mu$
- $m_2 = \mu$
- Position of m_1 : $(-\mu, 0)$
- Position of m_2 : $(1 \mu, 0)$
- $r_1^2 = (q_1 + \mu)^2 + q_2^2$
- $r_2^2 = (q_1 1 + \mu)^2 + q_2^2$



The planar circular restricted three-body problem

Hamiltonian

The Hamiltonian of the planar restricted three body problem is

$$H(p,q) = \frac{1}{2} \|p\|^2 + q_2 p_1 - q_1 p_2 - \frac{\mu}{r_1} - \frac{1-\mu}{r_2}.$$

The planar circular restricted three-body problem

Hamiltonian

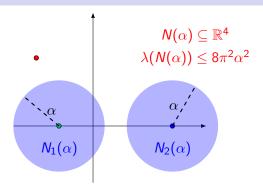
The Hamiltonian of the planar restricted three body problem is

$$H(p,q) = \frac{1}{2} \|p\|^2 + q_2 p_1 - q_1 p_2 - \frac{\mu}{r_1} - \frac{1-\mu}{r_2}.$$

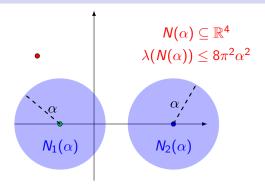
Planar restricted three body simulation

- $\mu \in [0, 0.5]$ fixed
- $A \subseteq \mathbb{R}^4$ the set of initial values (p,q) such that $H(p,q) \le 1$ and $\|q\| \le 1$.
- Goal: map $(p,q) \in A$ and $t \in [0,1]$ to q(t).

lpha-collisions



α -collisions

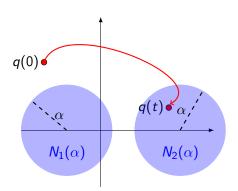


Proof Sketch.

- ullet Change coordinates such that $(-\mu,0)$ is at the origin
- Parameterize phase space by $\Phi: (H, r, \varphi, \psi)$
- $N_1(\varepsilon) \subseteq \Phi(G)$ for $G := [-1,1] \times [0,\alpha] \times [0,2\pi) \times [0,2\pi)$

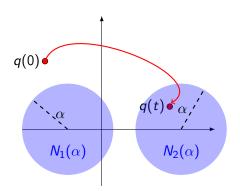
Retracting to Initial Values

• $B_t(\alpha)$: Initial conditions ending up in $N(\alpha)$ at time t.



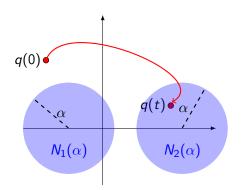
Retracting to Initial Values

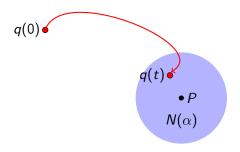
- $B_t(\alpha)$: Initial conditions ending up in $N(\alpha)$ at time t.
- By Liouville's theorem $\lambda(B_t(\alpha)) = \lambda(N(\alpha)).$

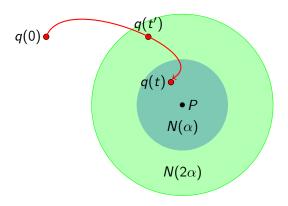


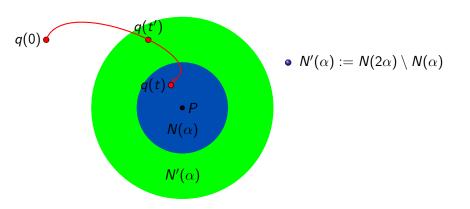
Retracting to Initial Values

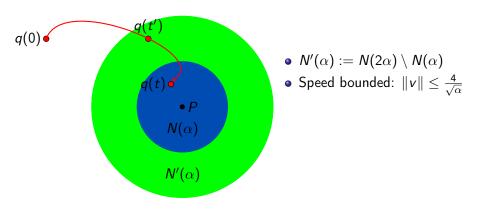
- $B_t(\alpha)$: Initial conditions ending up in $N(\alpha)$ at time t.
- By Liouville's theorem $\lambda(B_t(\alpha)) = \lambda(N(\alpha)).$
- $B(\alpha) \subseteq \bigcup_{t \in [0,1]} B_t(\alpha)$

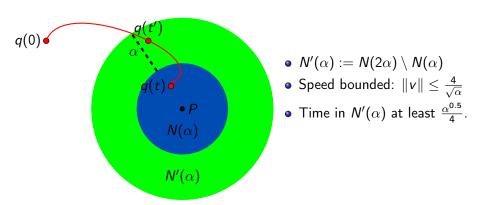


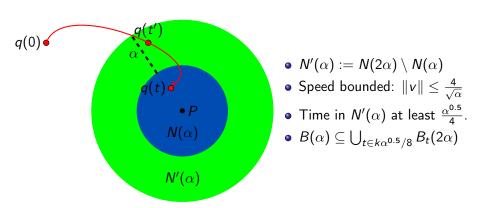


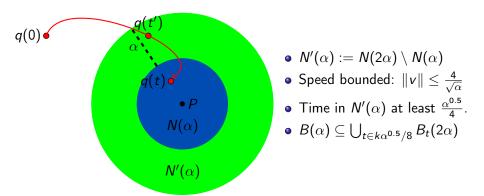












Theorem

For the measure of initial values leading to an α -collisions in [0,1] it holds $\lambda(B(\alpha)) \leq 64\pi^2\alpha^{1.5}$.

Average case complexity

- Polynomial average time: $\int \frac{T_A(x,n)^{\varepsilon}}{n} dx$ bounded.
- $x \notin B(\alpha) \Rightarrow T(x,n) \in O((n+\frac{1}{\alpha})^m)$
- $\lambda(B(\alpha)) \leq 64\pi^2\alpha^{1.5}$
- By a similar argument as before one can show that $\lambda(A) \geq 8\pi^2$.
- For randomly selected initial values: $P(x \in B(\alpha)) \le 8\alpha^{1.5}$.

Average case complexity

- Polynomial average time: $\int \frac{T_A(x,n)^{\varepsilon}}{n} dx$ bounded.
- $x \notin B(\alpha) \Rightarrow T(x,n) \in O((n+\frac{1}{\alpha})^m)$
- $\lambda(B(\alpha)) \le 64\pi^2 \alpha^{1.5}$
- By a similar argument as before one can show that $\lambda(A) \geq 8\pi^2$.
- For randomly selected initial values: $P(x \in B(\alpha)) \le 8\alpha^{1.5}$.

Theorem

Simulating the planar circular restricted three-body problem can be done in polynomial time on average.

Conclusion / Future Work

• Subset of phase space corresponding to α -collisions has to go to zero for $\alpha \to 0$

Conclusion / Future Work

- Subset of phase space corresponding to $\alpha\text{-collisions}$ has to go to zero for $\alpha \to 0$
- Extension to the spatial case straight forward

Conclusion / Future Work

- Subset of phase space corresponding to α -collisions has to go to zero for $\alpha \to 0$
- Extension to the spatial case straight forward
- How about the general *N*-body or other systems?