
Average-case complexity for the restricted three-body
problem 1

Akitoshi Kawamura, Holger Thies, Martin Ziegler

June 27, 2017

1The authors thank the Japan Society for the Promotion of Science (JSPS),
Core-to-Core Program (A. Advanced Research Networks) and JSPS Kakenhi Project
2670000 for supporting the research.

1



The N-body problem

The N-body problem is the problem of predicting the motion of N objects
under their mutual gravitational attraction.

Law of Universal Gravitation
r

m2m1

Fi ,j = G m1m2
r2i,j

Equations of Motion
3N-dim. 2nd order ODE system:

mi q̈i (t) =
∑
k 6=i

mimk(qk(t)− qi (t))

|qk(t)− qi (t)|3

The system can equivalently be written as a 6N-dimensional system of
first-order ordinary differential equations.
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N-body simulation

Problem
Given initial values q1, . . . , qN , v1, . . . , vN and time t compute q(t), v(t).
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The N-body problem

For N = 2 the system can be solved analytically.

For N ≥ 3 no analytical solution.
For N = 3 all singularities are collisions.
In 1912 Karl Sundman found a (nearly) general solution for N = 3 in
terms of a convergent power series expansion.
By a applying a transformation of variables, he could find a power
series that converges for all time.
The solution was later extended to N bodies by Wang Qiu-Dong.
However, the solution is not useful for computations as it converges
extremely slowly
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Local solution

q̈i (t) =
∑
k 6=i

mk(qk(t)− qi (t))

‖qk(t)− qi (t)‖3

M :=
N∑
i=1

mi

r1,2

r1,3 r2,3

m2m1

m3

We can find the power series of the solution around t0

If ‖qi (t)− qi (t0)‖ ≤ r
4 it holds ri ,j(t) ≥ r

2 and ‖q̈i (t)‖ ≤ 4Mr−2

Cauchy’s existence theorem: |t − t0| < r3

(N+1)16M .

For |t − t0| ≤ r ′

2 it is suffices to sum O(n) coefficients.
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α-collision

α
Assume q(t), v(t) /∈ N(α) for
t ∈ [0, 1] then q(t) can be computed
in time poly(n + 1/α).
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Discrete average case complexity

Worst-case complexity max{TA(x) : x ∈ {0, 1}n} can depend on only
a few instances

More realistic: expected time over random inputs of length n

Naive idea: TA(n) = EPn{TA(x) : x ∈ {0, 1}n}
Not robust w.r.t to polynomial slowdown
More robust definition (Levin): EPn{

TA(x)ε

n : |x | ≤ n} bounded.
Polynomial time on average: Probability of time longer than T is less
than poly(n)

T ε .
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Average case complexity of real functions

1
ln(e/x)

Definition (Average Case Polynomial Time)
TA(x , n) := max{TA((am)m∈N, n)) : am converges quickly to x}
Polynomial average time:

∫ TA(x ,n)
ε

n dx bounded.
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Average case complexity for the N-body problem

Recall α-collision: Two particles are α-close to each other
How likely is an α-collision?

Definition
The set B(α) ⊆ R6n is defined as the set of points (q0, v0) such that

1 (q0, v0) is an initial condition at time t = 0
2 There is an i 6= j such that |qi (t)− qj(t)| ≤ α for some t ∈ [0, 1].

What is the Lebesgue measure of this subset?

Saari: The set of initial values leading to collisions for N ≤ 4 has
measure 0.
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Hamiltonian systems

Definition
A Hamiltonian system is a dynamical system where the evolution over time
is described by 2n first order ordinary differential equations of the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q

for a smooth real-valued function H(t, q, p) called the Hamiltonian.

Theorem (Liouville)
Let ϕ be a Hamiltonian system and A a set of inital conditions then∫

A
dz =

∫
ϕt(A)

dz .
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The N-body problem in Hamiltonian form

The Hamiltonian for the N-body problem is

H(q, p) =
n∑

i=1

‖pi‖2

2mi
−

∑
1≤i≤j

mimj

‖qi − qj‖

with q, p ∈ R3. H is constant over time.

Basic Idea
Show that the subset of phase space where two particles are close to
each other is small.
Apply Lioville’s theorem and show that the corresponding set of initial
values is small.
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Restricting the problem

Planar Circular Restricted Three-body problem
12



The planar circular restricted three-body problem

Normalization

µ ∈ [0, 0.5]

m1 = 1− µ
m2 = µ

Position of m1: (−µ, 0)

Position of m2: (1− µ, 0)

r2
1 = (q1 + µ)2 + q2

2

r2
2 = (q1 − 1 + µ)2 + q2

2

r1 r2

(q1, q2)

µ 1− µ

13



The planar circular restricted three-body problem

Hamiltonian
The Hamiltonian of the planar restricted three body problem is

H(p, q) =
1
2
‖p‖2 + q2p1 − q1p2 −

µ

r1
− 1− µ

r2
.

Planar restricted three body simulation
µ ∈ [0, 0.5] fixed
A ⊆ R4 the set of initial values (p, q) such that H(p, q) ≤ 1 and
‖q‖ ≤ 1.
Goal: map (p, q) ∈ A and t ∈ [0, 1] to q(t).
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α-collisions

αα

N2(α)N1(α)

N(α) ⊆ R4

λ(N(α)) ≤ 8π2α2

Proof Sketch.
Change coordinates such that (−µ, 0) is at the origin
Parameterize phase space by Φ : (H, r , ϕ, ψ)

N1(ε) ⊆ Φ(G ) for G := [−1, 1]× [0, α]× [0, 2π)× [0, 2π)
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Retracting to Initial Values

Bt(α): Initial conditions ending
up in N(α) at time t.

By Liouville’s theorem
λ(Bt(α)) = λ(N(α)).
B(α) ⊆

⋃
t∈[0,1] Bt(α)

q(0)

q(t) αα

N2(α)N1(α)
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Measure of B(α)

P

q(0)

q(t)

N(α)

N ′(α) := N(2α) \ N(α)

Speed bounded: ‖v‖ ≤ 4√
α

Time in N ′(α) at least α0.5

4 .
B(α) ⊆

⋃
t∈kα0.5/8 Bt(2α)

Theorem
For the measure of initial values leading to an α-collisions in [0, 1] it holds
λ(B(α)) ≤ 64π2α1.5.
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Average case complexity

Polynomial average time:
∫ TA(x ,n)

ε

n dx bounded.
x /∈ B(α)⇒ T (x , n) ∈ O((n + 1

α)m)

λ(B(α)) ≤ 64π2α1.5

By a similar argument as before one can show that λ(A) ≥ 8π2.
For randomly selected initial values: P(x ∈ B(α)) ≤ 8α1.5.

Theorem
Simulating the planar circular restricted three-body problem can be done in
polynomial time on average.
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Conclusion / Future Work

Subset of phase space corresponding to α-collisions has to go to zero
for α→ 0

Extension to the spatial case straight forward
How about the general N-body or other systems?
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