Point-free Descriptive Set Theory and Algorithmic Randomness

Alex Simpson

University of Ljubljana, Slovenia

incorporating j.w.w. Antonin Delpeuch (Univ. Oxford)

 σ -frames . . .

A σ -frame $\mathcal{O}(X)$ is a partially-ordered set with:

- countable joins \bigvee (including the empty join \emptyset),
- finite meets \land (including the empty meet X),
- satisfying the countable distributive law:

$$U \wedge (\bigvee_{i} V_{i}) = \bigvee_{i} U \wedge V_{i} .$$

A morphism $p: \mathcal{O}(Y) \to \mathcal{O}(X)$, between σ -frames is a function that preserves countable joins and finite meets.

We write $\sigma \mathbf{Frm}$ for the category of σ -frames.

... and σ -locales

A σ -locale X is given by a σ -frame $\mathcal{O}(X)$.

A map $f: X \to Y$, between σ -locales X, Y, is given by a morphism $f^{-1}: \mathcal{O}(Y) \to \mathcal{O}(X)$ of σ -frames.

We write $\sigma \mathbf{Loc}$ for the category of σ -locales.

(N.B., $\sigma \mathbf{Loc} \simeq \sigma \mathbf{Frm}^{\mathsf{op}}$.)

Example σ -frames

- $\mathcal{O}(X)$ = the lattice of open subsets of a topological space.
- $\mathcal{O}(X)$ = the lattice of Borel subsets of a topological space.
- $\mathcal{O}(X)$ = the lattice of Σ_{α} -subsets of a topological space, for any ordinal α .

Full subcategories of $\sigma \mathbf{Loc}$

 $\sigma \mathbf{Loc}$ is the category of maps between σ -locales.

- The category of continuous functions between hereditarily Lindelöf sober topological spaces.
- The category of Borel-measurable functions between standard Borel spaces.

Complements and Boolean algebras

The complement (if it exists) of an element u in a distributive lattice P is the (necessarily unique) element $\overline{u} \in P$ satisfying

$$u \wedge \overline{u} = \bot$$
 $u \vee \overline{u} = \top$

If $p: P \to Q$ is a homomorphism of distributive lattices and u, \overline{u} are complements in P then $p(u), p(\overline{u})$ are complements in Q.

A distributive lattice P is a Boolean algebra if and only if every element of P has a complement.

Every distributive-lattice homomorphism $p: P \to Q$ between Boolean algebras is a Boolean-algebra homomorphism.

σ -Boolean algebras

For any σ -frame P, define a σ -Boolean algebra $\mathcal{B}(P)$ and homomorphism $i: P \longrightarrow \mathcal{B}(P)$ via the following universal property.

• for every homomorphism $p: P \to Q$, where Q is a σ -Boolean algebra, there exists a unique homomorphism q such that

Theorem (CLASS). For any quasi-Polish space X, it holds that $\mathcal{B}(\mathcal{O}(X)) \cong \mathcal{B}or(X)$.

The 'jump' functor

For any σ -frame P, define a σ -frame $\mathcal{S}(P)$ and homomorphism $j: P \longrightarrow \mathcal{S}(P)$ via the following universal property.

- 1. Every element in the image of j has a complement in $\mathcal{S}(P)$; and
- 2. for every homomorphism $p: P \to Q$, where every element in the image of p has a complement in Q, there exists a unique homomorphism q such that

The Borel hierarchy

Theorem (CLASS). For any quasi-Polish space X, it holds that $S^n(\mathcal{O}(X)) \cong \Sigma_{n+1}(X)$.

- The classical result should generalise to ordinal-indexed iterations.
- It should hold constructively that \mathcal{B} is the free monad over the functor \mathcal{S} .
- By interpreting the definition in suitable realizability toposes, it should be possible to obtain connections with Turing degrees, the arithmetic hierarchy and the lightface hierarchy.

• . . .

Probability valuations

Write [0,1] for the set of 'reals' defined as limits of ascending sequences of rationals in [0,1].

A probability $(\sigma$ -)valuation on a σ -frame $\mathcal{O}(X)$ is a function

$$\mu: \mathcal{O}(X) \to \overline{[0,1]}$$

satisfying

- $\mu(\emptyset) = 0$ and $\mu(X) = 1$.
- $\mu(u \vee v) + \mu(u \wedge v) = \mu(u) + \mu(v)$.
- $u \le v$ implies $\mu(u) \le \mu(v)$.
- $(u_i)_i$ ascending implies $\mu(\bigvee_i u_i) = \sup_i \mu(u_i)$.

The Cantor locale

Define $\mathcal{O}(\mathbf{2^N})$ to be the free σ -frame on countably many complemented generators $(c_i)_i$.

Intuitively, the generator c_i represents the clopen set

$$\{\alpha \in \{0,1\}^{\omega} \mid \alpha_i = 1\}$$

Proposition. There is a unique probability valuation $\lambda \colon \mathcal{O}(\mathbf{2^N}) \to [0,1]$ such that $\lambda(c_i) = \frac{1}{2}$ for every i.

We are endowing the Cantor $(\sigma$ -)locale $2^{\mathbb{N}}$ with the uniform probability valuation.

 σ -sublocales

A map $f: X \to Y$ between σ -locales is said to be an embedding if $f^{-1}: \mathcal{O}(Y) \to \mathcal{O}(X)$ is surjective.

The embeddings determine the notion of σ -sublocale.

The σ -sublocales of a σ -locale X are in 1–1 correspondence with congruences on $\mathcal{O}(X)$.

The σ -sublocales of X form a complete lattice Sub(X) under the embedding order.

Open σ -sublocales

For $v \in \mathcal{O}(X)$ define a congruence relation $\approx_{o(v)}$ on $\mathcal{O}(X)$ by

$$u \approx_{o(v)} u' \Leftrightarrow u \wedge v = u' \wedge v$$

It holds that

$$\mathcal{O}(X)/\approx_{o(v)} \cong \downarrow v$$

We call o(v) the open σ -sublocale determined by v.

The σ -locale of random sequences

For $u, v \in \mathcal{O}(2^{\mathbb{N}})$, define:

$$u \approx v \iff \lambda(u) = \lambda(u \land v) = \lambda(v)$$

Define $\mathcal{O}(\operatorname{Ran}) = \mathcal{O}(2^{\mathbf{N}})/\approx$.

Theorem

- 1. Ran is the intersection of all outer-measure-1 σ -sublocales of 2^{N} .
- 2. Ran is the intersection of all measure-1 open σ -sublocales of $2^{\mathbb{N}}$.
- 3. Ran itself has outer measure 1.

(We say a σ -sublocale $X \subseteq \mathbf{2^N}$ has outer measure 1 if, for every open σ -sublocale $X \subseteq o(u) \subseteq \mathbf{2^N}$, it holds that $\lambda(u) = 1$.)

Points

The terminal σ -locale **1** is given by defining $\mathcal{O}(\mathbf{1})$ to be the free σ -frame on no generators.

A point of a σ -locale X is a map from the terminal σ -locale 1 to X.

That is, points are given by σ -frame homomorphisms from $\mathcal{O}(X)$ to $\mathcal{O}(\mathbf{1})$.

Proposition Ran has no points.

Classical points

In our intuitionistic development, there is a potentially weaker notion of classical point of a σ -locale X: a map from $\mathbf{1}^c$ to X where

$$\mathcal{O}(\mathbf{1}^c) = \Omega_{\neg\neg} = \{ p \in \Omega \mid \neg \neg p \Rightarrow p \}$$

Under classical logic, $\mathbf{1}^c \cong \mathbf{1}$, so classical points coincide with points.

If LEM fails, they may differ.

We can view this difference by interpreting the development in Hyland's effective topos $\mathcal{E}ff$. [Hyland 1981]

Interpretation in $\mathcal{E}ff$

The objects in our development all produce assemblies.

$$|\mathcal{O}(\mathbf{2^{N}})| = \{U \subseteq \{0,1\}^{\omega} \mid U \text{ c.e. open}\}$$

$$n \mathbf{r} U \Leftrightarrow n \text{ codes a sequence } (C_i)_i \text{ of cylinders s.t. } U = \bigcup_i C_i$$

$$|\overline{[0,1]}| = \{x \in [0,1] \mid x \text{ left c.e.}\}$$

$$n \mathbf{r} x \Leftrightarrow n \text{ codes a sequence } (q_i)_i \text{ of rationals s.t. } x = \sup_i q_i$$

$$|\mathcal{O}(\mathbf{1})| = \{0,1\}$$

$$n \mathbf{r} a \Leftrightarrow (a = 1 \land n \in K) \lor (a = 0 \land n \in \overline{K})$$

$$|\mathcal{O}(\mathbf{1}^c)| = \{0,1\}$$

$$n \mathbf{r} a \Leftrightarrow \text{true}$$

Theorem (CLASS)

- 1. The points of $2^{\mathbb{N}}$ in $\mathcal{E}ff$ are in 1–1 correspondence with computable sequences $\alpha \in \{0,1\}^{\omega}$.
- 2. The classical points of $2^{\mathbb{N}}$ in $\mathcal{E}ff$ are in 1–1 correspondence with arbitrary sequences $\alpha \in \{0,1\}^{\omega}$.
- 3. Ran in Eff has no points.
- 4. The classical points of Ran in $\mathcal{E}ff$ are in 1–1 correspondence with Kurtz random sequences $\alpha \in \{0,1\}^{\omega}$.

A sequence $\alpha \in \{0,1\}^{\omega}$ is Kurtz random if it is contained in every measure-1 c.e. open subset $U \subseteq \{0,1\}^{\omega}$. [Kurtz 1981]

Revisiting constructive point-free descriptive set theory

There are two possible approaches to generating a σ -frame $\Sigma_{\alpha+1}(X)$ from $\Sigma_{\alpha}(X)$.

1. Obtain $\Sigma_{\alpha+1}(X)$ as the free σ -frame that adds complements to every element of $\Sigma_{\alpha}(X)$.

This is the 'jump' operation from earlier.

2. Obtain $\Sigma_{\alpha+1}(X)$ by extending the σ -coframe $\Pi_{\alpha}(X) = (\Sigma_{\alpha}(X))^{\text{op}}$ with countable joins.

Approach 1 seems the 'correct' approach to obtaining a rich constructive point-free descriptive set theory.

But we now follow approach 2.

The σ -frame $\Sigma_2(\mathbf{2^N})$

Define $\Sigma_2(\mathbf{2^N})$ to be the free σ -frame over $\mathcal{O}(\mathbf{2^N})^{\mathsf{op}}$ considered as a distributive lattice.

• There is a distributive-lattice homomorphism

$$c \colon \mathcal{O}(\mathbf{2^N})^{\mathsf{op}} \to \Sigma_2(\mathbf{2^N})$$

ullet It further holds that c preserves countable meets.

We call elements of $\Sigma_2(\mathbf{2^N})$ in the image of c closed.

The Σ_2 -reals

Define [0,1] to be the set of 'reals' obtained as nested sup-infs of doubly indexed sequences of rationals in [0,1].

Proposition. The probability valuation

$$\lambda \colon \mathcal{O}(\mathbf{2^N})^{\mathsf{op}} \to \overleftarrow{[0,1]}$$

extends to a 'probability valuation'

$$\lambda \colon \Sigma_2(\mathbf{2^N}) \to [0,1]$$

Moreover, λ preserves countable meets of closed elements.

Two random sub- Σ_2 -locales

Let Ran₁ be the intersection of all measure-1 Σ_2 sub- Σ_2 -locales of $\Sigma_2(\mathbf{2^N})$.

Let Ran₂ be the intersection of all outer-measure-1 sub- Σ_2 -locales of $\Sigma_2(\mathbf{2^N})$.

It is immediate that $Ran_2 \subseteq Ran_1 \subseteq \mathbf{2^N}$.

Proposition. Ran₂ (hence Ran₁) has outer measure 1.

Theorem (CLASS).

- 1. The classical Σ_2 -points of Ran₁ in $\mathcal{E}ff$ are in 1–1 correspondence with Martin-Löf random sequences $\alpha \in \{0,1\}^{\omega}$.
- 2. The classical Σ_2 -points of Ran₂ in $\mathcal{E}ff$ are in 1–1 correspondence with difference random sequences $\alpha \in \{0,1\}^{\omega}$.

A sequence α is not ML-random if and only if, for every confidence level $\epsilon > 0$, there exists (computably in ϵ) a c.e. open U_{ϵ} with measure $< \epsilon$ such that $\alpha \in U_{\epsilon}$. [Martin-Löf 1966]

A sequence α is difference random if and only if it is ML-random and the halting set K is not computable relative to α . [Franklin & Ng 2011]

Some further directions

- Canonicity theorems
- Point-free and constructive measure extension theorems
- Formally develop the parallel between increasing complexity of sets and increasing complexity of real numbers