Point-free Descriptive Set Theory and Algorithmic Randomness Alex Simpson University of Ljubljana, Slovenia incorporating j.w.w. Antonin Delpeuch (Univ. Oxford) σ -frames . . . A σ -frame $\mathcal{O}(X)$ is a partially-ordered set with: - countable joins \bigvee (including the empty join \emptyset), - finite meets \land (including the empty meet X), - satisfying the countable distributive law: $$U \wedge (\bigvee_{i} V_{i}) = \bigvee_{i} U \wedge V_{i} .$$ A morphism $p: \mathcal{O}(Y) \to \mathcal{O}(X)$, between σ -frames is a function that preserves countable joins and finite meets. We write $\sigma \mathbf{Frm}$ for the category of σ -frames. ... and σ -locales A σ -locale X is given by a σ -frame $\mathcal{O}(X)$. A map $f: X \to Y$, between σ -locales X, Y, is given by a morphism $f^{-1}: \mathcal{O}(Y) \to \mathcal{O}(X)$ of σ -frames. We write $\sigma \mathbf{Loc}$ for the category of σ -locales. (N.B., $\sigma \mathbf{Loc} \simeq \sigma \mathbf{Frm}^{\mathsf{op}}$.) ## Example σ -frames - $\mathcal{O}(X)$ = the lattice of open subsets of a topological space. - $\mathcal{O}(X)$ = the lattice of Borel subsets of a topological space. - $\mathcal{O}(X)$ = the lattice of Σ_{α} -subsets of a topological space, for any ordinal α . # Full subcategories of $\sigma \mathbf{Loc}$ $\sigma \mathbf{Loc}$ is the category of maps between σ -locales. - The category of continuous functions between hereditarily Lindelöf sober topological spaces. - The category of Borel-measurable functions between standard Borel spaces. # Complements and Boolean algebras The complement (if it exists) of an element u in a distributive lattice P is the (necessarily unique) element $\overline{u} \in P$ satisfying $$u \wedge \overline{u} = \bot$$ $u \vee \overline{u} = \top$ If $p: P \to Q$ is a homomorphism of distributive lattices and u, \overline{u} are complements in P then $p(u), p(\overline{u})$ are complements in Q. A distributive lattice P is a Boolean algebra if and only if every element of P has a complement. Every distributive-lattice homomorphism $p: P \to Q$ between Boolean algebras is a Boolean-algebra homomorphism. ## σ -Boolean algebras For any σ -frame P, define a σ -Boolean algebra $\mathcal{B}(P)$ and homomorphism $i: P \longrightarrow \mathcal{B}(P)$ via the following universal property. • for every homomorphism $p: P \to Q$, where Q is a σ -Boolean algebra, there exists a unique homomorphism q such that Theorem (CLASS). For any quasi-Polish space X, it holds that $\mathcal{B}(\mathcal{O}(X)) \cong \mathcal{B}or(X)$. # The 'jump' functor For any σ -frame P, define a σ -frame $\mathcal{S}(P)$ and homomorphism $j: P \longrightarrow \mathcal{S}(P)$ via the following universal property. - 1. Every element in the image of j has a complement in $\mathcal{S}(P)$; and - 2. for every homomorphism $p: P \to Q$, where every element in the image of p has a complement in Q, there exists a unique homomorphism q such that ## The Borel hierarchy Theorem (CLASS). For any quasi-Polish space X, it holds that $S^n(\mathcal{O}(X)) \cong \Sigma_{n+1}(X)$. - The classical result should generalise to ordinal-indexed iterations. - It should hold constructively that \mathcal{B} is the free monad over the functor \mathcal{S} . - By interpreting the definition in suitable realizability toposes, it should be possible to obtain connections with Turing degrees, the arithmetic hierarchy and the lightface hierarchy. • . . . ## Probability valuations Write [0,1] for the set of 'reals' defined as limits of ascending sequences of rationals in [0,1]. A probability $(\sigma$ -)valuation on a σ -frame $\mathcal{O}(X)$ is a function $$\mu: \mathcal{O}(X) \to \overline{[0,1]}$$ #### satisfying - $\mu(\emptyset) = 0$ and $\mu(X) = 1$. - $\mu(u \vee v) + \mu(u \wedge v) = \mu(u) + \mu(v)$. - $u \le v$ implies $\mu(u) \le \mu(v)$. - $(u_i)_i$ ascending implies $\mu(\bigvee_i u_i) = \sup_i \mu(u_i)$. #### The Cantor locale Define $\mathcal{O}(\mathbf{2^N})$ to be the free σ -frame on countably many complemented generators $(c_i)_i$. Intuitively, the generator c_i represents the clopen set $$\{\alpha \in \{0,1\}^{\omega} \mid \alpha_i = 1\}$$ Proposition. There is a unique probability valuation $\lambda \colon \mathcal{O}(\mathbf{2^N}) \to [0,1]$ such that $\lambda(c_i) = \frac{1}{2}$ for every i. We are endowing the Cantor $(\sigma$ -)locale $2^{\mathbb{N}}$ with the uniform probability valuation. σ -sublocales A map $f: X \to Y$ between σ -locales is said to be an embedding if $f^{-1}: \mathcal{O}(Y) \to \mathcal{O}(X)$ is surjective. The embeddings determine the notion of σ -sublocale. The σ -sublocales of a σ -locale X are in 1–1 correspondence with congruences on $\mathcal{O}(X)$. The σ -sublocales of X form a complete lattice Sub(X) under the embedding order. # Open σ -sublocales For $v \in \mathcal{O}(X)$ define a congruence relation $\approx_{o(v)}$ on $\mathcal{O}(X)$ by $$u \approx_{o(v)} u' \Leftrightarrow u \wedge v = u' \wedge v$$ It holds that $$\mathcal{O}(X)/\approx_{o(v)} \cong \downarrow v$$ We call o(v) the open σ -sublocale determined by v. ## The σ -locale of random sequences For $u, v \in \mathcal{O}(2^{\mathbb{N}})$, define: $$u \approx v \iff \lambda(u) = \lambda(u \land v) = \lambda(v)$$ Define $\mathcal{O}(\operatorname{Ran}) = \mathcal{O}(2^{\mathbf{N}})/\approx$. #### Theorem - 1. Ran is the intersection of all outer-measure-1 σ -sublocales of 2^{N} . - 2. Ran is the intersection of all measure-1 open σ -sublocales of $2^{\mathbb{N}}$. - 3. Ran itself has outer measure 1. (We say a σ -sublocale $X \subseteq \mathbf{2^N}$ has outer measure 1 if, for every open σ -sublocale $X \subseteq o(u) \subseteq \mathbf{2^N}$, it holds that $\lambda(u) = 1$.) #### Points The terminal σ -locale **1** is given by defining $\mathcal{O}(\mathbf{1})$ to be the free σ -frame on no generators. A point of a σ -locale X is a map from the terminal σ -locale 1 to X. That is, points are given by σ -frame homomorphisms from $\mathcal{O}(X)$ to $\mathcal{O}(\mathbf{1})$. Proposition Ran has no points. ## Classical points In our intuitionistic development, there is a potentially weaker notion of classical point of a σ -locale X: a map from $\mathbf{1}^c$ to X where $$\mathcal{O}(\mathbf{1}^c) = \Omega_{\neg\neg} = \{ p \in \Omega \mid \neg \neg p \Rightarrow p \}$$ Under classical logic, $\mathbf{1}^c \cong \mathbf{1}$, so classical points coincide with points. If LEM fails, they may differ. We can view this difference by interpreting the development in Hyland's effective topos $\mathcal{E}ff$. [Hyland 1981] # Interpretation in $\mathcal{E}ff$ The objects in our development all produce assemblies. $$|\mathcal{O}(\mathbf{2^{N}})| = \{U \subseteq \{0,1\}^{\omega} \mid U \text{ c.e. open}\}$$ $$n \mathbf{r} U \Leftrightarrow n \text{ codes a sequence } (C_i)_i \text{ of cylinders s.t. } U = \bigcup_i C_i$$ $$|\overline{[0,1]}| = \{x \in [0,1] \mid x \text{ left c.e.}\}$$ $$n \mathbf{r} x \Leftrightarrow n \text{ codes a sequence } (q_i)_i \text{ of rationals s.t. } x = \sup_i q_i$$ $$|\mathcal{O}(\mathbf{1})| = \{0,1\}$$ $$n \mathbf{r} a \Leftrightarrow (a = 1 \land n \in K) \lor (a = 0 \land n \in \overline{K})$$ $$|\mathcal{O}(\mathbf{1}^c)| = \{0,1\}$$ $$n \mathbf{r} a \Leftrightarrow \text{true}$$ #### Theorem (CLASS) - 1. The points of $2^{\mathbb{N}}$ in $\mathcal{E}ff$ are in 1–1 correspondence with computable sequences $\alpha \in \{0,1\}^{\omega}$. - 2. The classical points of $2^{\mathbb{N}}$ in $\mathcal{E}ff$ are in 1–1 correspondence with arbitrary sequences $\alpha \in \{0,1\}^{\omega}$. - 3. Ran in Eff has no points. - 4. The classical points of Ran in $\mathcal{E}ff$ are in 1–1 correspondence with Kurtz random sequences $\alpha \in \{0,1\}^{\omega}$. A sequence $\alpha \in \{0,1\}^{\omega}$ is Kurtz random if it is contained in every measure-1 c.e. open subset $U \subseteq \{0,1\}^{\omega}$. [Kurtz 1981] Revisiting constructive point-free descriptive set theory There are two possible approaches to generating a σ -frame $\Sigma_{\alpha+1}(X)$ from $\Sigma_{\alpha}(X)$. 1. Obtain $\Sigma_{\alpha+1}(X)$ as the free σ -frame that adds complements to every element of $\Sigma_{\alpha}(X)$. This is the 'jump' operation from earlier. 2. Obtain $\Sigma_{\alpha+1}(X)$ by extending the σ -coframe $\Pi_{\alpha}(X) = (\Sigma_{\alpha}(X))^{\text{op}}$ with countable joins. Approach 1 seems the 'correct' approach to obtaining a rich constructive point-free descriptive set theory. But we now follow approach 2. The σ -frame $\Sigma_2(\mathbf{2^N})$ Define $\Sigma_2(\mathbf{2^N})$ to be the free σ -frame over $\mathcal{O}(\mathbf{2^N})^{\mathsf{op}}$ considered as a distributive lattice. • There is a distributive-lattice homomorphism $$c \colon \mathcal{O}(\mathbf{2^N})^{\mathsf{op}} \to \Sigma_2(\mathbf{2^N})$$ ullet It further holds that c preserves countable meets. We call elements of $\Sigma_2(\mathbf{2^N})$ in the image of c closed. The Σ_2 -reals Define [0,1] to be the set of 'reals' obtained as nested sup-infs of doubly indexed sequences of rationals in [0,1]. Proposition. The probability valuation $$\lambda \colon \mathcal{O}(\mathbf{2^N})^{\mathsf{op}} \to \overleftarrow{[0,1]}$$ extends to a 'probability valuation' $$\lambda \colon \Sigma_2(\mathbf{2^N}) \to [0,1]$$ Moreover, λ preserves countable meets of closed elements. Two random sub- Σ_2 -locales Let Ran₁ be the intersection of all measure-1 Σ_2 sub- Σ_2 -locales of $\Sigma_2(\mathbf{2^N})$. Let Ran₂ be the intersection of all outer-measure-1 sub- Σ_2 -locales of $\Sigma_2(\mathbf{2^N})$. It is immediate that $Ran_2 \subseteq Ran_1 \subseteq \mathbf{2^N}$. Proposition. Ran₂ (hence Ran₁) has outer measure 1. #### Theorem (CLASS). - 1. The classical Σ_2 -points of Ran₁ in $\mathcal{E}ff$ are in 1–1 correspondence with Martin-Löf random sequences $\alpha \in \{0,1\}^{\omega}$. - 2. The classical Σ_2 -points of Ran₂ in $\mathcal{E}ff$ are in 1–1 correspondence with difference random sequences $\alpha \in \{0,1\}^{\omega}$. A sequence α is not ML-random if and only if, for every confidence level $\epsilon > 0$, there exists (computably in ϵ) a c.e. open U_{ϵ} with measure $< \epsilon$ such that $\alpha \in U_{\epsilon}$. [Martin-Löf 1966] A sequence α is difference random if and only if it is ML-random and the halting set K is not computable relative to α . [Franklin & Ng 2011] #### Some further directions - Canonicity theorems - Point-free and constructive measure extension theorems - Formally develop the parallel between increasing complexity of sets and increasing complexity of real numbers