Sequentially locally convex QCB-spaces and Complexity Theory

Matthias Schröder

TU Darmstadt, Germany

CCC 2017

Nancy, June 2017

Contents

- Sequentially locally convex QCB-spaces in Analysis
- Co-Polish spaces
- Application in Complexity Theory
- Hybrid representations

Sequentially locally convex QCB-spaces

- ► Topological vector space: a vector space endowed with a topology rendering addition & scalar multiplication continuous.
- ► Locally convex space: a topological vector space whose topology is induced by seminorms.

- Topological vector space: a vector space endowed with a topology rendering addition & scalar multiplication continuous.
- Locally convex space: a topological vector space whose topology is induced by seminorms.
- ▶ *Seminorm* on \mathfrak{X} : a function $p: \mathfrak{X} \to \mathbb{R}_{>0}$ s.t.
 - $p(\vec{0}) = 0$,
 - ▶ $p(x + y) \le p(x) + p(y)$,
- ▶ p is a *norm*, if additionally $p(x) = 0 \implies x = \vec{0}$.

Example (Locally convex spaces)

- Any normed space.
- ▶ The space \mathcal{D} of test functions on \mathbb{R} .

- QCB-spaces = the class of topological spaces which can be handled by TTE, the Type Two Model of Effectivity.
- QCB-space: a quotient of a countably based top. space.

- QCB-spaces = the class of topological spaces which can be handled by TTE, the Type Two Model of Effectivity.
- QCB-space: a quotient of a countably based top. space.

Facts

- Separable metrisable spaces are QCB-spaces.
- The quotient topology of a TTE-representation is QCB.
- ► The category QCB of QCB-spaces and continuous functions has excellent closure properties:
 - cartesian closed
 - countably complete
 - countably co-complete

Why not just locally convex QCB-spaces?

Why not just locally convex QCB-spaces?

Problem

- Important locally convex spaces are not sequential.
- Locally convex QCB-spaces do not enjoy nice closure properties.

Example

The vector space \mathcal{D} of test functions on \mathbb{R} .

- ► The standard locally convex topology on *D* is not sequential, hence not *QCB*.
- Its sequentialisation is QCB, but not locally convex.

Definition

A sequentially locally convex QCB-space \mathfrak{X} is

- a vector space
- endowed with a QCB₀-topology
- such that the convergence relation is induced by a family of continuous seminorms.

Abbreviation: QLC-space.

Definition

A sequentially locally convex QCB-space \mathfrak{X} is

- a vector space
- endowed with a QCB₀-topology
- such that the convergence relation is induced by a family of continuous seminorms.

Abbreviation: *QLC*-space.

Remark

- Any QLC-space is the sequentialisation of a locally convex space.
- Sequentialisation $seq(\tau)$ of a topology τ : the family of all *sequentially open* sets pertaining to τ .

Let \mathfrak{X} be a sequentially locally convex QCB-space. Then:

- X is Hausdorff.
- Scalar multiplication is topologically continuous.
- Vector addition is sequentially continuous,
- but not necessarily topologically continuous.

Remember

 $f: X \to Y$ is *sequentially continuous*, if $(x_n)_n \to x_\infty$ in X implies $(f(x_n))_n \to f(x_\infty)$ in Y.

Example (QLC-spaces)

- separable Banach spaces
- locally convex spaces with a countable base

Example (QLC-spaces)

- separable Banach spaces
- locally convex spaces with a countable base

Example

Let \mathcal{D} be the vector space of test functions on \mathbb{R} .

- ▶ The sequentialisation of the standard locally convex topology τ_{LC} on \mathcal{D} is QCB.
- ▶ Hence \mathcal{D} endowed with $seq(\tau_{LC})$ is a QLC-space.

Example (QLC-spaces)

- separable Banach spaces
- locally convex spaces with a countable base

Example

Let \mathcal{D} be the vector space of test functions on \mathbb{R} .

- The sequentialisation of the standard locally convex topology ⊤_{LC} on D is QCB.
- ▶ Hence \mathcal{D} endowed with $seq(\tau_{LC})$ is a QLC-space.
- ▶ Vector addition is not topologically continuous w.r.t. $seq(\tau_{LC})$,
- but sequentially continuous.
- $seq(\tau_{LC})$ is not locally convex.

Definition

Denote by QLC the following category:

- Objects: all sequentially locally convex QCB-spaces
- ► *Morphisms:* all continuous & linear functions $f: \mathfrak{X} \to \mathfrak{Y}$

Theorem

The category QLC is cartesian and monoidal closed:

- cartesian product $\mathfrak{X} \times \mathfrak{Y}$
- function space $\mathfrak{Lin}(\mathfrak{X},\mathfrak{Y})$
- tensor product $\mathfrak{X} \otimes \mathfrak{Y}$

Proof Sketch

Use the corresponding constructions in QCB.

Topological dual

▶ *Topological dual* \mathfrak{X}' of a topological vector space \mathfrak{X} :

```
\{f \colon \mathfrak{X} \to \mathbb{R} \mid f \text{ continuous \& linear}\}
```

▶ There are several ways to topologise \mathfrak{X}' .

Topological dual

▶ *Topological dual* \mathfrak{X}' of a topological vector space \mathfrak{X} :

```
\{f \colon \mathfrak{X} 	o \mathbb{R} \, \big| \, f \text{ continuous & linear} \}
```

▶ There are several ways to topologise \mathfrak{X}' .

The dual space \mathfrak{X}^* in QLC

- ► Underlying vector space of X*:
 - $\{f \colon \mathfrak{X} \to \mathbb{R} \mid f \text{ continuous & linear}\}$
- ► Topology of X*:
 - The subspace topology of the QCB-function space $\mathbb{R}^{\mathfrak{X}}$

Duals in QLC

- ▶ If \mathfrak{X} is finite-dimensional, then $\mathfrak{X}^* \cong \mathfrak{X}$.
- ▶ If \mathfrak{X} is a separable Banach space, then
 - \mathfrak{X}^* need not be the Banach space dual,
 - \blacktriangleright \mathfrak{X}^* carries the sequentialisation of the weak-*-topology.
- ▶ If \mathfrak{X} is separable normed, then \mathfrak{X}^{**} is the completion of \mathfrak{X} .

Duals in QLC

Proposition

- ▶ If \mathfrak{X} is finite-dimensional, then $\mathfrak{X}^* \cong \mathfrak{X}$.
- ▶ If \mathfrak{X} is a separable Banach space, then

 - \blacktriangleright \mathfrak{X}^* carries the sequentialisation of the weak-*-topology.
- ▶ If \mathfrak{X} is separable normed, then \mathfrak{X}^{**} is the completion of \mathfrak{X} .

Proposition

If $\mathfrak{X} \in \mathsf{QLC}$ is metrisable, then \mathfrak{X}^* is co-Polish.

Co-Polish spaces

Definition

We call a QCB-space X *co-Polish*, if \mathbb{S}^X is quasi-Polish.

Remark

- quasi-Polish = separable completely quasi-metrisable
- ▶ S denotes the Sierpiński space

Definition

We call a QCB-space X *co-Polish*, if \mathbb{S}^X is quasi-Polish.

Remark

- quasi-Polish = separable completely quasi-metrisable
- S denotes the Sierpiński space

Theorem (Characterisation)

Let X be a Hausdorff QCB-space. TFAE:

- X is co-Polish.
- ▶ S^X is has a countable base.
- X has an admissible TTE-representation with a locally compact domain.
- X is the direct limit of an increasing sequence of compact metrisable spaces.

Let X be a Hausdorff space with a countable base. Then:

Let X be a Hausdorff space with a countable base. Then:

- The category of co-Polish Hausdorff spaces
 - has finite products and equalisers (inherited from QCB),
 - but is not closed under forming QCB-exponentials.
- Hausdorff quotients of co-Polish Hausdorff spaces are co-Polish.

Let X be a Hausdorff space with a countable base. Then:

- The category of co-Polish Hausdorff spaces
 - has finite products and equalisers (inherited from QCB),
 - but is not closed under forming QCB-exponentials.
- Hausdorff quotients of co-Polish Hausdorff spaces are co-Polish.
- For any Y with a countable base and any co-Polish space X, Y^X has a countable base.
- ► [de Brecht & Sch.] For any (quasi-)Polish space Y and any co-Polish space X, Y^X is (quasi-)Polish.

Let X be a Hausdorff space with a countable base. Then:

- The category of co-Polish Hausdorff spaces
 - has finite products and equalisers (inherited from QCB),
 - but is not closed under forming QCB-exponentials.
- Hausdorff quotients of co-Polish Hausdorff spaces are co-Polish.
- For any Y with a countable base and any co-Polish space X, Y^X has a countable base.
- ► [de Brecht & Sch.] For any (quasi-)Polish space Y and any co-Polish space X, Y^X is (quasi-)Polish.
- A topological subspace Y of a co-Polish Hausdorff space X is co-Polish iff Y is a crescent subset of X.

Co-Polish spaces in QLC

Theorem

Let \mathfrak{X} be a sequentially locally convex QCB-space. Then:

- \mathfrak{X} is sep. metrisable $\iff \mathfrak{X}^*$ is co-Polish
- $\mathfrak X$ is co-Polish $\Longleftrightarrow \mathfrak X^*$ is sep. metrisable
 - $\iff \mathfrak{X}^*$ is Polish

Proposition

Any co-Polish QLC-space is locally convex.

Application in Type 2 Complexity Theory

Type Two Model of Effectivity (TTE)

▶ A *representation* of *X* is a partial surjection $\delta: \Sigma^{\mathbb{N}} \dashrightarrow X$.

Type Two Model of Effectivity (TTE)

- ▶ A *representation* of *X* is a partial surjection $\delta: \Sigma^{\mathbb{N}} \dashrightarrow X$.
- Let $\delta \colon \Sigma^{\mathbb{N}} \dashrightarrow X$ and $\gamma \colon \Sigma^{\mathbb{N}} \dashrightarrow Y$ be representations. $f \colon X \to Y$ is called (δ, γ) -computable, if there is a computable function $g \colon \Sigma^{\mathbb{N}} \dashrightarrow \Sigma^{\mathbb{N}}$ such that

commutes.

▶ $g: \Sigma^{\mathbb{N}} \longrightarrow \Sigma^{\mathbb{N}}$ is *computable*, if there is an oracle Turing machine M that computes g.

Definition

Let *M* be an oracle machine that (δ, γ) -computes $f: X \to Y$.

Define the computation time of M by

$$Time_{M}(p, n) := \begin{cases} \text{the number of steps that } M \text{ makes} \\ \text{on input } (p, n) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \end{cases}$$

Define the relative computation time on A ⊆ X by

$$\underline{Time}_{\mathbf{M}}^{\delta}(\mathbf{A}, \mathbf{n}) := \sup \big\{ Time_{\mathbf{M}}(\mathbf{p}, \mathbf{n}) \, \big| \, \delta(\mathbf{p}) \in \mathbf{A} \big\}$$

Definition

Let *M* be an oracle machine that (δ, γ) -computes $f: X \to Y$.

Define the computation time of M by

$$Time_{M}(p, n) := \begin{cases} \text{the number of steps that } M \text{ makes} \\ \text{on input } (p, n) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \end{cases}$$

Define the relative computation time on A ⊆ X by

$$\underline{Time}_{M}^{\delta}(A, n) := \sup \{ Time_{M}(p, n) \mid \delta(p) \in A \}$$

Problem

- ▶ The sup may be equal to ∞ , even if $A = \{x\}$.
- ▶ So *M* may not even have a time bound on singletons.

How to ensure the existence of time bounds?

Observation

- ▶ If $\delta^{-1}[A]$ is compact, then $Time_M^{\delta}(A, n) < \infty$.
- ▶ If δ is a continuous representation of a space X, then $\delta^{-1}[A]$ compact \implies A compact.

How to ensure the existence of time bounds?

Observation

- ▶ If $\delta^{-1}[A]$ is compact, then $Time_M^{\delta}(A, n) < \infty$.
- ▶ If δ is a continuous representation of a space X, then $\delta^{-1}[A]$ compact \implies A compact.

Definition

A continuous representation δ of X is called *proper*, if $\delta^{-1}[K]$ is compact for every compact $K \subseteq X$.

Lemma

For a proper δ , time complexity can be measured by a function

$$T: \{K \subseteq X \mid K \text{ compact}\} \times \mathbb{N} \to \mathbb{N}$$

The signed-digit representation ρ_{sd} for \mathbb{R} defined by

$$\varrho_{\mathrm{sd}}(p) := p(0) + \sum_{i=1}^{\infty} p(i) \cdot 2^{-i} \qquad \text{for } p \in \mathbb{Z} \times \{-1, 0, 1\}^{\mathbb{N}}$$

is proper.

Theorem

A sequential space X has a proper admissible representation iff X is separable metrisable.

Simple Complexity

Aim

Measurement of time complexity in terms of

- a discrete parameter on the input &
- the output precision.

Simple Complexity

Aim

Measurement of time complexity in terms of

- a discrete parameter on the input &
- the output precision.

Idea

- ▶ Equip δ with a "size function" S: dom (δ) → \mathbb{N} .
- ▶ Measure time complexity by $T_M: \mathbb{N} \times \mathbb{N} \dashrightarrow \mathbb{N}$ defined by

$$T_M(a, n) := \sup \{ Time_M(p, n) \mid S(p) = a \},$$

where M is a realising machine.

We call $S: dom(\delta) \to \mathbb{N}$ a *size function* for δ , if

- S is continuous,
- ▶ $S^{-1}{a}$ is compact for all $a \in \mathbb{N}$.

Example

Natural size functions for the signed-digit representation for \mathbb{R} :

- $S_1(p) = |p(0)|$
- $S_2(p) = \log_2(|p(0)| + 1)$

Lemma

Let δ be a representation with size function S. Then

$$T_M(a, n) = \sup \{ Time_M(p, n) \mid S(p) = a \}$$

exists for all $a, n \in \mathbb{N}$, whenever M realises a total function on X.

Corollary

Time complexity of a function f on (X, δ) can be measured in two *discrete* parameters:

- the size S(p) of the input name p &
- the desired output precision.

Let \mathcal{P} be the vector space of polynomials over the reals.

- ▶ Suitable representation $\varrho_{\mathcal{P}}$:
 - Store the coefficients & an upper bound of the degree
- ▶ Size $S(q) \in \mathbb{N} \times \mathbb{N}$ of a name q:
 - the upper bound of the degree & the maximum of the integer parts of the coefficients

Let \mathcal{P} be the vector space of polynomials over the reals.

- ► Suitable representation *QP*:
 - Store the coefficients & an upper bound of the degree
- ▶ Size $S(q) \in \mathbb{N} \times \mathbb{N}$ of a name q:
 - the upper bound of the degree & the maximum of the integer parts of the coefficients
- ▶ Evaluation is $(\varrho_{\mathcal{P}}, \varrho_{sd}, \varrho_{sd})$ -computable in time polynomial in the size functions of $\varrho_{\mathcal{P}}$ and ϱ_{sd} .

Let \mathcal{P} be the vector space of polynomials over the reals.

- Suitable representation ρ_P:
 - Store the coefficients & an upper bound of the degree
- ▶ Size $S(q) \in \mathbb{N} \times \mathbb{N}$ of a name q:
 - the upper bound of the degree & the maximum of the integer parts of the coefficients
- ▶ Evaluation is $(\varrho_{\mathcal{P}}, \varrho_{sd}, \varrho_{sd})$ -computable in time polynomial in the size functions of $\varrho_{\mathcal{P}}$ and ϱ_{sd} .
- The final topology of ρ_P is co-Polish, but neither metrisable nor countably-based.

Lemma

A representation has a size function iff its domain is locally compact.

Theorem

A Hausdorff QCB-space has an admissible representation with a size function iff it is co-Polish.

Application

- Let \mathcal{E} be the space of infinitely differentiable functions on \mathbb{R} .
- $ightharpoonup \mathcal{E}$ is a separable Fréchet space.

Application

- Let \mathcal{E} be the space of infinitely differentiable functions on \mathbb{R} .
- \triangleright \mathcal{E} is a separable Fréchet space.
- ▶ Hence \mathcal{E}^* is a locally convex co-Polish space.
- $ightharpoonup \mathcal{E}^*$ admits a simple measurement of complexity.

Application

- ▶ Let \mathcal{E} be the space of infinitely differentiable functions on \mathbb{R} .
- \triangleright \mathcal{E} is a separable Fréchet space.
- ▶ Hence \mathcal{E}^* is a locally convex co-Polish space.
- \triangleright \mathcal{E}^* admits a simple measurement of complexity.

Remark

- \mathcal{E}^* can be identified with the space of distributions over \mathbb{R} with compact support.
- The space S* of tempered distributions is co-Polish, because S is a separable Fréchet space.
- ▶ The space \mathcal{D}^* of all distributions is not co-Polish, as the space \mathcal{D} of test functions is not countably-based.

Hybrid Representations

Observation

Representations for spaces in Functional Analysis are typically constructed by encoding:

- a sequence of reals &
- a sequence of discrete information.

- ▶ Let $\mathbb{H} := [-1; 1]^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$.
- ▶ A *hybrid representation* of X is a partial surjection ψ : $\mathbb{H} \dashrightarrow X$.

- ▶ Let $\mathbb{H} := [-1; 1]^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$.
- ▶ A *hybrid representation* of X is a partial surjection ψ : $\mathbb{H} \dashrightarrow X$.
- f: X → Y is (ψ_X, ψ_Y)-computable, if there is a computable
 h: ℍ --→ ℍ such that

▶ C[0; 1]: Choose a dense sequence $(d_i)_i$ in [0; 1]. Define

$$\psi(r,p) = f :\iff \begin{cases} \forall i \in \mathbb{N}. \ r(i) \cdot p(0) = f(d_i) & \& \\ k \mapsto p(k+1) \text{ is a modulus} \\ \text{of continuity for } f \end{cases}$$

► The space of polynomials \mathcal{P} : Use $\mathbb{H}_0 = [-1; 1]^{\mathbb{N}} \times \mathbb{N}$ and define

$$\psi(r,\langle a,b\rangle) = P :\iff P(x) = \sum_{k=0}^{b} a \cdot r(k) \cdot x^{k}$$

Let *M* be an oracle machine realising $f: (X, \psi_X) \to (Y, \psi_Y)$.

A function $t: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^2 \to \mathbb{N}$ is a *time bound* for M, if

- ▶ for all $(r, p) \in \text{dom}(\psi_X)$ and all $j, k \in \mathbb{N}$
- M produces q(j) and some 2^{-k}-approximation to s(j) (where (s, q) denotes the produced representative of the result)
- ▶ in $\leq t(p, j, k)$ steps.

Let *M* be an oracle machine realising $f: (X, \psi_X) \to (Y, \psi_Y)$.

A function $t: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^2 \to \mathbb{N}$ is a *time bound* for M, if

- ▶ for all $(r, p) \in \text{dom}(\psi_X)$ and all $j, k \in \mathbb{N}$
- M produces q(j) and some 2^{-k}-approximation to s(j) (where (s, q) denotes the produced representative of the result)
- ▶ in $\leq t(p, j, k)$ steps.

Remark

Hybrid representations have an implicit size function

$$S \colon \mathbb{H} \to \mathbb{N}^{\mathbb{N}}, \ (r,p) \mapsto p.$$

Theorem

Any oracle Turing machine realising some function w.r.t. hybrid representations with closed domain has a continuous time bound $t : \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^2 \to \mathbb{N}$.

The proof is based on:

Lemma

A hybrid representation ψ has a closed domain iff

$$\{(r,p) \in dom(\psi) \mid p \in K\}$$
 is compact

for every compact $K \subseteq \mathbb{N}^{\mathbb{N}}$.

Theorem

Any oracle Turing machine realising some function w.r.t. hybrid representations with closed domain has a continuous time bound $t : \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^2 \to \mathbb{N}$.

The proof is based on:

Lemma

A hybrid representation ψ has a closed domain iff

$$\{(r,p) \in \text{dom}(\psi) \mid p \in K\}$$
 is compact

for every compact $K \subseteq \mathbb{N}^{\mathbb{N}}$.

Definition

A hybrid representation is *complete*, if its domain is closed.

Theorem

- A metric space has an admissible complete hybrid representation iff it is Polish.
- ▶ A Hausdorff space has an admissible complete hybrid representation over $\mathbb{H}_0 = [-1;1]^{\mathbb{N}} \times \mathbb{N}$ iff it is co-Polish.

Theorem

The category of Hausdorff QCB-spaces having an admissible complete hybrid representation has

- countable products,
- countable co-products,
- equalisers.

But it is not closed under forming function spaces in QCB.

Summary

- QLC-spaces provide a nice framework to study computability on locally convex spaces.
- Co-Polish Hausdorff spaces allow the measurement of complexity by natural number functions.
- Important examples are the duals of separable metrisable locally convex spaces.
- Hybrid representations yield a unifying approach to Complexity Theory in Computable Analysis.