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Locally convex QCB-spaces Locally convex spaces

Remember
» Topological vector space: a vector space endowed with a
topology rendering addition & scalar multiplication continuous.

» Locally convex space: a topological vector space whose
topology is induced by seminorms.

» Seminormon X: a function p: X — R>¢ s.t.

—

> p(0) =0,
> p(x +y) < p(x) + p(y);
> pla-x) = |af - p(X).
» pis a norm, if additionally p(x) =0 = x = 0.

Example (Locally convex spaces)
» Any normed space.
» The space D of test functions on R.
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Locally convex QCB-spaces QCB-spaces

Remember
» QCB-spaces = the class of topological spaces which can
be handled by TTE, the Type Two Model of Effectivity.

» QCB-space: a quotient of a countably based top. space.

Facts
» Separable metrisable spaces are QCB-spaces.
» The quotient topology of a TTE-representation is QCB.
» The category QCB of QCB-spaces and continuous functions
has excellent closure properties:

» cartesian closed
» countably complete
» countably co-complete
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Locally convex QCB-spaces Problem

Why not just locally convex QCB-spaces?

Problem
» Important locally convex spaces are not sequential.

» Locally convex QCB-spaces do not enjoy nice closure
properties.

Example
The vector space D of test functions on R.

» The standard locally convex topology on D
is not sequential, hence not QCB.

» Its sequentialisation is QCB, but not locally convex.
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Definition

A sequentially locally convex QCB-space X is
» a vector space
» endowed with a QCBy-topology

» such that the convergence relation is induced by a family of
continuous seminorms.

Abbreviation: QLC-space.



Sequentially locally convex QCB-spaces Definition

Definition

A sequentially locally convex QCB-space X is
» a vector space
» endowed with a QCBy-topology

» such that the convergence relation is induced by a family of
continuous seminorms.

Abbreviation: QLC-space.

Remark
» Any QLC-space is the sequentialisation of a locally convex
space.
» Sequentialisation seq(7) of a topology 7:
the family of all sequentially open sets pertaining to .



Sequentially locally convex QCB-spaces Properties

Proposition
Let X be a sequentially locally convex QCB-space. Then:
» X is Hausdorff.
» Scalar multiplication is topologically continuous.
» Vector addition is sequentially continuous,
» but not necessarily topologically continuous.

Remember
f: X — Y is sequentially continuous, if (xn)n — X in X implies
(f(xn))n — f(Xs) InY.
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» separable Banach spaces
» locally convex spaces with a countable base
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Example (QLC-spaces)
» separable Banach spaces
» locally convex spaces with a countable base

Example
Let D be the vector space of test functions on R.

» The sequentialisation of the standard locally convex
topology 71 on D is QCB.

» Hence D endowed with seq(7.c) is a QLC-space.



Sequentially locally convex QCB-spaces Example

Example (QLC-spaces)
» separable Banach spaces
» locally convex spaces with a countable base

Example
Let D be the vector space of test functions on R.

» The sequentialisation of the standard locally convex
topology 71 on D is QCB.

Hence D endowed with seq(m ) is a QLC-space.

Vector addition is not topologically continuous w.r.t. seq(m.c),
but sequentially continuous.

seq(Lc) is not locally convex.
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Sequentially locally convex QCB-spaces

Definition
Denote by QLC the following category:
» Objects:
all sequentially locally convex QCB-spaces
» Morphisms:
all continuous & linear functions f: X — 2)

The category QLC



Sequentially locally convex QCB-spaces Closure properties

Theorem
The category QLC is cartesian and monoidal closed:

» cartesian product X x )
» function space Lin(X%,9))
» tensor product X ® 9)

Proof Sketch
Use the corresponding constructions in QCB.
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Topological dual
» Topological dual X' of a topological vector space X:

{f: X — R| f continuous & linear}

» There are several ways to topologise X’.
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Topological dual
» Topological dual X' of a topological vector space X:

{f: X — R| f continuous & linear}

» There are several ways to topologise X’.

The dual space X* in QLC
» Underlying vector space of X*:
{f: X — R|f continuous & linear}

» Topology of X*:
The subspace topology of the QCB-function space R*



Sequentially locally convex QCB-spaces Duals in QLC

Duals in QLC

Proposition
» If X is finite-dimensional, then X* = X.
» If X is a separable Banach space, then

» X* need not be the Banach space dual,
» X* carries the sequentialisation of the weak-«-topology.

» If X is separable normed, then X** is the completion of X.



Sequentially locally convex QCB-spaces Duals in QLC

Duals in QLC

Proposition
» If X is finite-dimensional, then X* = X.
» If X is a separable Banach space, then

» X* need not be the Banach space dual,
» X* carries the sequentialisation of the weak-«-topology.

» If X is separable normed, then X** is the completion of X.

Proposition
If X € QLC is metrisable, then X* is co-Polish.



Co-Polish spaces
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Definition
We call a QCB-space X co-Polish, if SX is quasi-Polish.

Remark
» quasi-Polish = separable completely quasi-metrisable

» S denotes the Sierpinski space



Co-Polish spaces Definition

Definition
We call a QCB-space X co-Polish, if SX is quasi-Polish.

Remark
» quasi-Polish = separable completely quasi-metrisable

» S denotes the Sierpinski space

Theorem (Characterisation)
Let X be a Hausdorff QCB-space. TFAE:
» X is co-Polish.
» SXis has a countable base.
» X has an admissible TTE-representation with a locally
compact domain.
» X s the direct limit of an increasing sequence of compact
metrisable spaces.
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Let X be a Hausdorff space with a countable base. Then:
» Xis co-Polish < X is locally compact.
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Let X be a Hausdorff space with a countable base. Then:
» Xis co-Polish < X is locally compact.
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» The category of co-Polish Hausdorff spaces
» has finite products and equalisers (inherited from QCB),
» but is not closed under forming QCB-exponentials.
» Hausdorff quotients of co-Polish Hausdorff spaces are
co-Polish.
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Proposition
Let X be a Hausdorff space with a countable base. Then:
» Xis co-Polish < X is locally compact.

Proposition
» The category of co-Polish Hausdorff spaces
» has finite products and equalisers (inherited from QCB),
» but is not closed under forming QCB-exponentials.
» Hausdorff quotients of co-Polish Hausdorff spaces are
co-Polish.
» For any Y with a countable base and any co-Polish space
X, YX has a countable base.
» [de Brecht & Sch.] For any (quasi-)Polish space Y and any
co-Polish space X, YX is (quasi-)Polish.



Co-Polish spaces Properties

Proposition
Let X be a Hausdorff space with a countable base. Then:
» Xis co-Polish < X is locally compact.

Proposition
» The category of co-Polish Hausdorff spaces
» has finite products and equalisers (inherited from QCB),
» but is not closed under forming QCB-exponentials.
» Hausdorff quotients of co-Polish Hausdorff spaces are
co-Polish.
» For any Y with a countable base and any co-Polish space
X, YX has a countable base.
» [de Brecht & Sch.] For any (quasi-)Polish space Y and any
co-Polish space X, YX is (quasi-)Polish.
» A topological subspace Y of a co-Polish Hausdorff space X
is co-Polish iff Y is a crescent subset of X.



Co-Polish spaces in QLC A duality result

Co-Polish spaces in QLC

Theorem
Let X be a sequentially locally convex QCB-space. Then:

» X is sep. metrisable <= X* is co-Polish
» X is co-Polish <= X* is sep. metrisable
<= X* is Polish

Proposition
Any co-Polish QLC-space is locally convex.
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Type Two Model of Effectivity (TTE)
» A representation of X is a partial surjection §: ¥ --» X.



Application in Complexity Theory Computability in TTE

Type Two Model of Effectivity (TTE)
» A representation of X is a partial surjection §: ¥ --» X.
» Lets: ¥V -—» Xand ~v: ¥ --5 Y be representations.
f: X — Yis called (¢, v)-computable, if there is a
computable function g: ¥ --» ¥ such that

f

X Y

i e b

N ¥N
g9

commutes.

» g: XN -5 ¥Nis computable, if there is an oracle Turing
machine M that computes g.



Basics of Type-2 Complexity Theory Definition

Definition
Let M be an oracle machine that (9, v)-computes f: X — Y.
» Define the computation time of M by

the number of steps that M makes

Timep(p, n) == { oninput (p, n) € N x N

» Define the relative computation time on A C X by

Time$,(A, n) := sup {Timeu(p, n)| 6(p) € A}



Basics of Type-2 Complexity Theory Definition

Definition
Let M be an oracle machine that (9, v)-computes f: X — Y.
» Define the computation time of M by

the number of steps that M makes

» Define the relative computation time on A C X by

Time$,(A, n) := sup {Timeu(p, n)| 6(p) € A}

Problem
» The sup may be equal to o, even if A= {x}.

» So M may not even have a time bound on singletons.



Basics of Type-2 Complexity Theory Proper representations

How to ensure the existence of time bounds?

Observation
» If 6 1[A] is compact, then Time$,(A, n) < cc.
» If § is a continuous representation of a space X, then
6~ '[A] compact —> A compact.



Basics of Type-2 Complexity Theory Proper representations

How to ensure the existence of time bounds?

Observation
» If 6 1[A] is compact, then Time$,(A, n) < cc.
» If § is a continuous representation of a space X, then
6~ '[A] compact —> A compact.

Definition
A continuous representation ¢ of X is called proper,
if 5~ 1[K] is compact for every compact K C X.

Lemma
For a proper §, time complexity can be measured by a function

T:{K C X|K compact} x N — N



Basics of Type-2 Complexity Theory Proper representations

Example
The signed-digit representation oy for R defined by
o0s(p +Zp - forpeZx{-1,01}N
is proper.
Theorem

A sequential space X has a proper admissible representation
iff X is separable metrisable.



Basics of Type-2 Complexity Theory

Simple Complexity

Aim

Measurement of time complexity in terms of
» a discrete parameter on the input &
» the output precision.

Simple Complexity



Basics of Type-2 Complexity Theory Simple Complexity

Simple Complexity

Aim

Measurement of time complexity in terms of
» a discrete parameter on the input &
» the output precision.

Idea
» Equip ¢ with a “size function” S: dom(J) — N.

» Measure time complexity by Ty,: N x N --» N defined by
Tw(a, n) := sup { Timey(p, n) | S(p) = a},

where M is a realising machine.



Simple Complexity Size functions

Definition
We call S: dom(d) — N a size function for ¢, if
» S is continuous,

» S~'{al is compact for all a € N.

Example
Natural size functions for the signed-digit representation for R:

> Si(p) = |p(0)]
> Sp(p) = log,(|p(0)| + 1)



Simple Complexity Size functions

Lemma
Let 0 be a representation with size function S. Then

Tu(a, n) = sup { Timey(p, n) | S(p) = a}
exists for all a, n € N, whenever M realises a total function on X.

Corollary
Time complexity of a function f on (X, §) can be measured in
two discrete parameters:

» the size S(p) of the input name p &

» the desired output precision.



Simple Complexity Example

Example
Let P be the vector space of polynomials over the reals.
» Suitable representation op:
» Store the coefficients & an upper bound of the degree
» Size 5(q) € N x N of a name q:

» the upper bound of the degree & the maximum of the
integer parts of the coefficients
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Example
Let P be the vector space of polynomials over the reals.
» Suitable representation op:
» Store the coefficients & an upper bound of the degree
» Size 5(q) € N x N of a name q:
» the upper bound of the degree & the maximum of the
integer parts of the coefficients

» Evaluation is (op, 0sd, 0sa)-computable
in time polynomial in the size functions of ¢o» and pg.



Simple Complexity Example

Example
Let P be the vector space of polynomials over the reals.
» Suitable representation op:
» Store the coefficients & an upper bound of the degree
» Size 5(q) € N x N of a name q:
» the upper bound of the degree & the maximum of the
integer parts of the coefficients

» Evaluation is (op, 0sd, 0sa)-computable
in time polynomial in the size functions of ¢o» and pg.

» The final topology of op is co-Polish,
but neither metrisable nor countably-based.



Simple Complexity Co-Polish spaces

Lemma
A representation has a size function iff its domain is locally

compact.

Theorem
A Hausdorff QCB-space has an admissible representation with

a size function iff it is co-Polish.
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Application
» Let £ be the space of infinitely differentiable functions on R.
» & is a separable Fréchet space.
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Application

Let £ be the space of infinitely differentiable functions on R.
£ is a separable Fréchet space.

Hence £* is a locally convex co-Polish space.

E* admits a simple measurement of complexity.
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Simple Complexity Sequentially locally convex QCB-spaces

Application
» Let £ be the space of infinitely differentiable functions on R.
» £ is a separable Fréchet space.
» Hence £* is a locally convex co-Polish space.
» £* admits a simple measurement of complexity.

Remark
» £* can be identified with the space of distributions over R
with compact support.

» The space S* of tempered distributions is co-Polish,
because S is a separable Fréchet space.

» The space D* of all distributions is not co-Polish,
as the space D of test functions is not countably-based.
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Hybrid representations Idea

Observation
Representations for spaces in Functional Analysis are typically
constructed by encoding:

» asequence of reals &
» a sequence of discrete information.



Hybrid representations Definition

Definition
» Let H :=[-1; 1] x NN,
» A hybrid representation of X is a partial surjection ¢): H --» X.



Hybrid representations Definition

Definition
» Let H :=[-1; 1] x NN,
» A hybrid representation of X is a partial surjection ¢): H --» X.

» f: X = Yis (¢¥x, 1y)-computable, if there is a computable
h: H --» H such that

X— 1y
¢XT O T@ZN
H H

h



Hybrid representations Example

Example
» C[0; 1]:
Choose a dense sequence (d;); in [0; 1]. Define
Vie N.r(i)-p(0) = f(d) &

(r.p) =1 <= { k— p(k + 1) is a modulus
of continuity for f

» The space of polynomials P:
Use Hg = [-1;1]" x N and define

b
w(r,(a,b)) =P <= P(X):Za'f(k)-xk
k=0



Hybrid representations Time bound

Definition
Let M be an oracle machine realising f: (X, ¥x) — (Y, ¢y).

A function t: NV x N2 — N is a time bound for M, if
» forall (r,p) € dom(¢x) and all j, k € N

» M produces q(j) and some 2~ *-approximation to s())
(where (s, g) denotes the produced representative of the result)

> in < t(p,J, k) steps.



Hybrid representations Time bound

Definition
Let M be an oracle machine realising f: (X, ¥x) — (Y, ¢y).

A function t: NV x N2 — N is a time bound for M, if
» forall (r,p) € dom(¢x) and all j, k € N

» M produces q(j) and some 2~ *-approximation to s())
(where (s, g) denotes the produced representative of the result)

> in < t(p,J, k) steps.
Remark
Hybrid representations have an implicit size function
S:H—NY, (r,p)— p.



Hybrid representations Completeness

Theorem

Any oracle Turing machine realising some function
w.r.t. hybrid representations with closed domain
has a continuous time bound t: NV x N2 — N,

The proof is based on:

Lemma

A hybrid representation ) has a closed domain iff
{(r,p) € dom(v)) | p € K} is compact

for every compact K C N,



Hybrid representations Completeness

Theorem

Any oracle Turing machine realising some function
w.r.t. hybrid representations with closed domain
has a continuous time bound t: NV x N2 — N,

The proof is based on:
Lemma
A hybrid representation ) has a closed domain iff

{(r,p) € dom(v)) | p € K} is compact
for every compact K C N,

Definition
A hybrid representation is complete, if its domain is closed.



Hybrid representations Closure Properties

Theorem
» A metric space has an admissible complete hybrid
representation iff it is Polish.

» A Hausdorff space has an admissible complete hybrid
representation over Hy = [—1; 1] x N iff it is co-Polish.

Theorem
The category of Hausdorff QCB-spaces having an admissible
complete hybrid representation has

» countable products,
» countable co-products,
» equalisers.
But it is not closed under forming function spaces in QCB.



Summary

Summary

» QLC-spaces provide a nice framework to study
computability on locally convex spaces.

» Co-Polish Hausdorff spaces allow the measurement of
complexity by natural number functions.

» Important examples are the duals of separable metrisable
locally convex spaces.

» Hybrid representations yield a unifying approach to
Complexity Theory in Computable Analysis.



