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Sequentially locally convex QCB-spaces



Locally convex QCB-spaces Locally convex spaces

Remember
I Topological vector space: a vector space endowed with a

topology rendering addition & scalar multiplication continuous.
I Locally convex space: a topological vector space whose

topology is induced by seminorms.

I Seminorm on X: a function p : X→ R≥0 s.t.
I p(~0) = 0,
I p(x + y) ≤ p(x) + p(y),
I p(α · x) = |α| · p(x).

I p is a norm, if additionally p(x) = 0 =⇒ x = ~0.

Example (Locally convex spaces)
I Any normed space.
I The space D of test functions on R.
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Locally convex QCB-spaces QCB-spaces

Remember
I QCB-spaces = the class of topological spaces which can

be handled by TTE, the Type Two Model of Effectivity.
I QCB-space: a quotient of a countably based top. space.

Facts
I Separable metrisable spaces are QCB-spaces.
I The quotient topology of a TTE-representation is QCB.
I The category QCB of QCB-spaces and continuous functions

has excellent closure properties:
I cartesian closed
I countably complete
I countably co-complete
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Locally convex QCB-spaces Problem

Why not just locally convex QCB-spaces?

Problem
I Important locally convex spaces are not sequential.
I Locally convex QCB-spaces do not enjoy nice closure

properties.

Example
The vector space D of test functions on R.
I The standard locally convex topology on D

is not sequential, hence not QCB.
I Its sequentialisation is QCB, but not locally convex.
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Sequentially locally convex QCB-spaces Definition

Definition
A sequentially locally convex QCB-space X is
I a vector space
I endowed with a QCB0-topology
I such that the convergence relation is induced by a family of

continuous seminorms.
Abbreviation: QLC-space.

Remark
I Any QLC-space is the sequentialisation of a locally convex

space.
I Sequentialisation seq(τ) of a topology τ :

the family of all sequentially open sets pertaining to τ .
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Sequentially locally convex QCB-spaces Properties

Proposition
Let X be a sequentially locally convex QCB-space. Then:
I X is Hausdorff.
I Scalar multiplication is topologically continuous.
I Vector addition is sequentially continuous,
I but not necessarily topologically continuous.

Remember
f : X→ Y is sequentially continuous, if (xn)n → x∞ in X implies(
f (xn)

)
n → f (x∞) in Y.



Sequentially locally convex QCB-spaces Example

Example (QLC-spaces)
I separable Banach spaces
I locally convex spaces with a countable base

Example
Let D be the vector space of test functions on R.
I The sequentialisation of the standard locally convex

topology τLC on D is QCB.
I Hence D endowed with seq(τLC) is a QLC-space.
I Vector addition is not topologically continuous w.r.t. seq(τLC),
I but sequentially continuous.
I seq(τLC) is not locally convex.
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Sequentially locally convex QCB-spaces The category QLC

Definition
Denote by QLC the following category:
I Objects:

all sequentially locally convex QCB-spaces
I Morphisms:

all continuous & linear functions f : X→ Y



Sequentially locally convex QCB-spaces Closure properties

Theorem
The category QLC is cartesian and monoidal closed:
I cartesian product X×Y

I function space Lin(X,Y)

I tensor product X⊗Y

Proof Sketch
Use the corresponding constructions in QCB.



Sequentially locally convex QCB-spaces Duals

Topological dual
I Topological dual X′ of a topological vector space X:{

f : X→ R
∣∣ f continuous & linear

}
I There are several ways to topologise X′.

The dual space X> in QLC
I Underlying vector space of X>:{

f : X→ R
∣∣ f continuous & linear

}
I Topology of X>:

The subspace topology of the QCB-function space RX
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Sequentially locally convex QCB-spaces Duals in QLC

Duals in QLC

Proposition
I If X is finite-dimensional, then X> ∼= X.
I If X is a separable Banach space, then

I X> need not be the Banach space dual,
I X> carries the sequentialisation of the weak-∗-topology.

I If X is separable normed, then X>> is the completion of X.

Proposition
If X ∈ QLC is metrisable, then X> is co-Polish.
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Co-Polish spaces Definition

Definition
We call a QCB-space X co-Polish, if SX is quasi-Polish.

Remark
I quasi-Polish = separable completely quasi-metrisable
I S denotes the Sierpiński space

Theorem (Characterisation)
Let X be a Hausdorff QCB-space. TFAE:
I X is co-Polish.
I SX is has a countable base.
I X has an admissible TTE-representation with a locally

compact domain.
I X is the direct limit of an increasing sequence of compact

metrisable spaces.
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Co-Polish spaces Properties

Proposition
Let X be a Hausdorff space with a countable base. Then:
I X is co-Polish⇐⇒ X is locally compact.

Proposition
I The category of co-Polish Hausdorff spaces

I has finite products and equalisers (inherited from QCB),
I but is not closed under forming QCB-exponentials.

I Hausdorff quotients of co-Polish Hausdorff spaces are
co-Polish.

I For any Y with a countable base and any co-Polish space
X, YX has a countable base.

I [de Brecht & Sch.] For any (quasi-)Polish space Y and any
co-Polish space X, YX is (quasi-)Polish.

I A topological subspace Y of a co-Polish Hausdorff space X
is co-Polish iff Y is a crescent subset of X.
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Co-Polish spaces in QLC A duality result

Co-Polish spaces in QLC

Theorem
Let X be a sequentially locally convex QCB-space. Then:
I X is sep. metrisable⇐⇒ X> is co-Polish
I X is co-Polish⇐⇒ X> is sep. metrisable

⇐⇒ X> is Polish

Proposition
Any co-Polish QLC-space is locally convex.
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Application in Complexity Theory Computability in TTE

Type Two Model of Effectivity (TTE)
I A representation of X is a partial surjection δ : ΣN 99K X .

I Let δ : ΣN 99K X and γ : ΣN 99K Y be representations.
f : X → Y is called (δ, γ)-computable, if there is a
computable function g : ΣN 99K ΣN such that

X f //

			

Y

ΣN
g

//

δ

OOOO

ΣN

γ
OOOO

commutes.
I g : ΣN 99K ΣN is computable, if there is an oracle Turing

machine M that computes g.
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Basics of Type-2 Complexity Theory Definition

Definition
Let M be an oracle machine that (δ, γ)-computes f : X → Y .
I Define the computation time of M by

TimeM(p,n) :=

{
the number of steps that M makes
on input (p,n) ∈ NN × N

I Define the relative computation time on A ⊆ X by

TimeδM(A,n) := sup
{
TimeM(p,n)

∣∣ δ(p) ∈ A
}

Problem
I The sup may be equal to∞, even if A = {x}.
I So M may not even have a time bound on singletons.
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Basics of Type-2 Complexity Theory Proper representations

How to ensure the existence of time bounds?

Observation
I If δ−1[A] is compact, then TimeδM(A,n) <∞.
I If δ is a continuous representation of a space X, then
δ−1[A] compact =⇒ A compact.

Definition
A continuous representation δ of X is called proper,
if δ−1[K ] is compact for every compact K ⊆ X.

Lemma
For a proper δ, time complexity can be measured by a function

T : {K ⊆ X |K compact} × N→ N
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Basics of Type-2 Complexity Theory Proper representations

Example
The signed-digit representation %sd for R defined by

%sd(p) := p(0) +
∞∑

i=1

p(i) · 2−i for p ∈ Z× {−1,0,1}N

is proper.

Theorem
A sequential space X has a proper admissible representation
iff X is separable metrisable.



Basics of Type-2 Complexity Theory Simple Complexity

Simple Complexity

Aim
Measurement of time complexity in terms of
I a discrete parameter on the input &
I the output precision.

Idea
I Equip δ with a “size function” S : dom(δ)→ N.
I Measure time complexity by TM : N× N 99K N defined by

TM(a,n) := sup
{
TimeM(p,n)

∣∣S(p) = a
}

,

where M is a realising machine.
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Simple Complexity Size functions

Definition
We call S : dom(δ)→ N a size function for δ, if
I S is continuous,
I S−1{a} is compact for all a ∈ N.

Example
Natural size functions for the signed-digit representation for R:
I S1(p) = |p(0)|
I S2(p) = log2(|p(0)|+ 1)



Simple Complexity Size functions

Lemma
Let δ be a representation with size function S. Then

TM(a,n) = sup
{
TimeM(p,n)

∣∣S(p) = a
}

exists for all a,n ∈ N, whenever M realises a total function on X .

Corollary
Time complexity of a function f on (X, δ) can be measured in
two discrete parameters:
I the size S(p) of the input name p &
I the desired output precision.



Simple Complexity Example

Example
Let P be the vector space of polynomials over the reals.
I Suitable representation %P :

I Store the coefficients & an upper bound of the degree
I Size S(q) ∈ N× N of a name q:

I the upper bound of the degree & the maximum of the
integer parts of the coefficients

I Evaluation is (%P , %sd, %sd)-computable
in time polynomial in the size functions of %P and %sd.

I The final topology of %P is co-Polish,
but neither metrisable nor countably-based.
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Simple Complexity Co-Polish spaces

Lemma
A representation has a size function iff its domain is locally
compact.

Theorem
A Hausdorff QCB-space has an admissible representation with
a size function iff it is co-Polish.



Simple Complexity Sequentially locally convex QCB-spaces

Application
I Let E be the space of infinitely differentiable functions on R.
I E is a separable Fréchet space.

I Hence E> is a locally convex co-Polish space.
I E> admits a simple measurement of complexity.

Remark
I E> can be identified with the space of distributions over R

with compact support.
I The space S> of tempered distributions is co-Polish,

because S is a separable Fréchet space.
I The space D> of all distributions is not co-Polish,

as the space D of test functions is not countably-based.
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Hybrid representations Idea

Observation
Representations for spaces in Functional Analysis are typically
constructed by encoding:
I a sequence of reals &
I a sequence of discrete information.



Hybrid representations Definition

Definition
I Let H := [−1; 1]N × NN.
I A hybrid representation of X is a partial surjection ψ : H 99K X.

I f : X→ Y is (ψX, ψY)-computable, if there is a computable
h : H 99K H such that

X f //

			

Y

H
h

//

ψX

OOOO

H

ψY

OOOO
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Hybrid representations Example

Example
I C[0; 1]:

Choose a dense sequence (di)i in [0; 1]. Define

ψ(r ,p) = f :⇐⇒


∀i ∈ N. r(i) · p(0) = f (di) &

k 7→ p(k + 1) is a modulus
of continuity for f

I The space of polynomials P:
Use H0 = [−1; 1]N × N and define

ψ(r , 〈a,b〉) = P :⇐⇒ P(x) =
b∑

k=0

a · r(k) · xk



Hybrid representations Time bound

Definition
Let M be an oracle machine realising f : (X, ψX)→ (Y, ψY).
A function t : NN × N2 → N is a time bound for M, if
I for all (r ,p) ∈ dom(ψX) and all j , k ∈ N
I M produces q(j) and some 2−k -approximation to s(j)

(where (s, q) denotes the produced representative of the result)

I in ≤ t(p, j , k) steps.

Remark
Hybrid representations have an implicit size function

S : H→ NN, (r ,p) 7→ p.
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Hybrid representations Completeness

Theorem
Any oracle Turing machine realising some function
w.r.t. hybrid representations with closed domain
has a continuous time bound t : NN × N2 → N.

The proof is based on:

Lemma
A hybrid representation ψ has a closed domain iff{

(r ,p) ∈ dom(ψ)
∣∣p ∈ K

}
is compact

for every compact K ⊆ NN.

Definition
A hybrid representation is complete, if its domain is closed.
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Hybrid representations Closure Properties

Theorem
I A metric space has an admissible complete hybrid

representation iff it is Polish.
I A Hausdorff space has an admissible complete hybrid

representation over H0 = [−1; 1]N × N iff it is co-Polish.

Theorem
The category of Hausdorff QCB-spaces having an admissible
complete hybrid representation has
I countable products,
I countable co-products,
I equalisers.

But it is not closed under forming function spaces in QCB.



Summary

Summary
I QLC-spaces provide a nice framework to study

computability on locally convex spaces.
I Co-Polish Hausdorff spaces allow the measurement of

complexity by natural number functions.
I Important examples are the duals of separable metrisable

locally convex spaces.
I Hybrid representations yield a unifying approach to

Complexity Theory in Computable Analysis.


