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Open determinacy

Definition

A £%-game in NV is given by a winning condition W C N*. Two
players take turns playing natural numbers. If the finite word w
of numbers played so far ever falls into W, Player 1 wins. If this
never happens, Player 2 wins.



Open determinacy

Definition

A £%-game in NV is given by a winning condition W C N*. Two
players take turns playing natural numbers. If the finite word w
of numbers played so far ever falls into W, Player 1 wins. If this
never happens, Player 2 wins.

Theorem
In every Z? -game, one of the players has a winning strategy.
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Perfect Tree Theorem

Definition
Atree T C N*is perfect, if it is non-empty and forany v e T
there are incomparable extensions vy, v € T.

Theorem (Perfect Tree Theorem)
For any tree T, either [T] is countable or T has a perfect
Subtree.
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The idea behind Weihrauch reducibility

1. ldentify a theorem
VxeX3dyeY.D(x)= T(x,y)

with the multi-valued function T :C X = Y, dom(T) = D
obtained by Skolemization.

2. Then compare theorems via Weihrauch-reducibility to
learn about their constructive content.



Weihrauch-reducibility
Definition
Forf:CX=Y,g:CV=Wsay

f<wg

iff there are computable H, K :C NN — NN, such that
H(idyv, GK) is a realizer of f for every realizer G of g.

—)lK g8 P H
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The idea behind reverse mathematics

1. Fix some weak axiom system (RCAy).

2. For theorems of second-order arithmetic, find canonic
representatives such that RCAq proves their equivalence.

3. Big Five: RCAq, WKLg, ACAq, ATR, and M1 —CA.
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» not resource sensitive,
» invariant under logical operations,
» not absolute
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Operations on Weihrauch degrees

Letf:X=Y,g:U=Y
» f: X% = Y* (parallelization)
» fxg: XxU=Y xV (parallel product)
» fxg=max{fog | f <w FAG <w g} (sequential product)
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Some special Weihrauch degrees

Definition
LPO : {0,1} — {0, 1} defined via LPO(0*) = 1 and
LPO(p) = 0 for p # 0“.

Definition
lim :C NN — NN defined via lim(p)(n) = limy_,o, p({n, k)).

Observg@n

Definition
Xy ANY) — {0, 1} defined via Xn1(0) = 1and xp; (A) = 0O if
A+,
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Closed Choice

Definition (Closed choice)
Cx :C A(X) = X defined via A € dom(Cx) if A # () and
x € Cx(A) iff x € A.

Definition (Unique choice)
UCy is the restriction of Cx to singletons.
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The correspondence

Reverse math Weihrauch degrees
RCAq computable
WKLo Cyo.1yn
ACAg lim <w TSW limx...xlim
ATRg 7?77

Question (Marcone)
What Weihrauch degree corresponds to ATRq ?
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Definition
Let FindWSy : O(NY) = NN map a £9-game where Player 1
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Definition
Let FindWSp : O(NY) = NN map a £9-game where Player 2
has a winning strategy to a winning strategy (for Player 2).

Definition

Let Dets : O(NY) = NN x NN map a £%-game to a pair of
strategies (o, 7) such that either o is winning for Player 1 or 7 is
winning for Player 2.
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The problems |l

Definition
Let List :C A(NY) = NN map () to 0% and countable non-empty
Ato some (qQo, q1,...) suchthat A= {q; | i € N}.

Definition
Let PTTy :C Trees =% Trees map a tree T such that [T] is
uncountable to some perfect subtree.

Definition
Let PTT, : Trees = N x Trees map a tree T to a pair (p, S)
such that either p € List([T]) or S € PTT4(S).
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Classifications

Theorem
UCyw =w FindWSy =w List.

Theorem
Cyy =w FindWSp =w PTT;.
(Cyv =w PTTy due to Brattka and Marcone).
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Classifications Il

Observation
XI'I] <w UCyn~ x Dety and XI'I] <w UCyn xPTTo

Corollary
Dets fw Cy and PTT» fw Cyn.

Corollary
Dets <w Cyyv * Xpyy @nd PTT2 <w Crv % Xpyy-

Proposition
Dety x Dety ﬁw Dets and PTT, x PTT, fw PTT>.
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Question
Does Dets =w PTT, hold?



An attempt

Definition
Lett:Z— {0,1},f:CX=Yandg:CA=BwithX Y,A B
being precomplete. Define

h:=Jiftthenfelseg] CZxXxA=2Y=2B

via (z,x,a) € dom(h) if {(z) =1 and x € dom(f) or t(z) =0
and a € dom(g), and (y, b) € h(z,x,a) if t{(z) =1 and y € f(x)
or t(z) =0and b € g(a).
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The big question Il

Observation
Dety <w [if an then UCNN else CNN] and
PTT, <w [if an then UCyn else CNN]

Question
Does [if xny then UGy else Cyv] <w Dety and/or
[if Xny then UGy else Cyv] <w PTT> hold?
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