Open determinacy and the perfect tree theorem

Takayuki Kihara & Arno Pauly

Nagoya University Université Libre de Bruxelles

CCC 2017

Outline

The theorems

The context

The results

Outline

The theorems

The context

The results

Open determinacy

Definition

A Σ_1^0 -game in $\mathbb{N}^\mathbb{N}$ is given by a winning condition $W \subseteq \mathbb{N}^*$. Two players take turns playing natural numbers. If the finite word w of numbers played so far ever falls into W, Player 1 wins. If this never happens, Player 2 wins.

Theorem

In every Σ_1^0 -game, one of the players has a winning strategy.

Open determinacy

Definition

A Σ^0_1 -game in $\mathbb{N}^\mathbb{N}$ is given by a winning condition $W\subseteq \mathbb{N}^*$. Two players take turns playing natural numbers. If the finite word w of numbers played so far ever falls into W, Player 1 wins. If this never happens, Player 2 wins.

Theorem

In every Σ_1^0 -game, one of the players has a winning strategy.

Perfect Tree Theorem

Definition

A tree $T \subseteq \mathbb{N}^*$ is perfect, if it is non-empty and for any $v \in T$ there are incomparable extensions $v_1, v_2 \in T$.

Theorem (Perfect Tree Theorem)

For any tree T, either [T] is countable or T has a perfect subtree.

Perfect Tree Theorem

Definition

A tree $T \subseteq \mathbb{N}^*$ is perfect, if it is non-empty and for any $v \in T$ there are incomparable extensions $v_1, v_2 \in T$.

Theorem (Perfect Tree Theorem)

For any tree T, either [T] is countable or T has a perfect subtree.

Outline

The theorems

The context

The results

The idea behind Weihrauch reducibility

1. Identify a theorem

$$\forall x \in \mathbf{X} \; \exists y \in \mathbf{Y} \; . \; D(x) \Rightarrow \; T(x,y)$$

with the multi-valued function $T :\subseteq X \Rightarrow Y$, dom(T) = D obtained by Skolemization.

Then compare theorems via Weihrauch-reducibility to learn about their constructive content.

The idea behind Weihrauch reducibility

1. Identify a theorem

$$\forall x \in \mathbf{X} \; \exists y \in \mathbf{Y} \; . \; D(x) \Rightarrow \; T(x,y)$$

with the multi-valued function $T :\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, dom(T) = D obtained by Skolemization.

Then compare theorems via Weihrauch-reducibility to learn about their constructive content.

The idea behind Weihrauch reducibility

1. Identify a theorem

$$\forall x \in \mathbf{X} \; \exists y \in \mathbf{Y} \; . \; D(x) \Rightarrow \; T(x,y)$$

with the multi-valued function $T :\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, dom(T) = D obtained by Skolemization.

2. Then compare theorems via Weihrauch-reducibility to learn about their *constructive content*.

Weihrauch-reducibility

Definition

For $f \subseteq X \Rightarrow Y$, $g \subseteq V \Rightarrow W$ say

$$f \leq_W g$$

iff there are computable $H, K :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, such that $H(\mathrm{id}_{\mathbb{N}^{\mathbb{N}}}, GK)$ is a realizer of f for every realizer G of g.

<□▶ <□▶ < 直▶ < 直▶ < 直▶ < 결 >

The idea behind reverse mathematics

- 1. Fix some weak axiom system (RCA₀).
- 2. For theorems of second-order arithmetic, find canonic representatives such that RCA₀ proves their equivalence.
- 3. Big Five: RCA_0 , WKL_0 , ACA_0 , ATR_0 and Π_1^1 –CA.

The idea behind reverse mathematics

- 1. Fix some weak axiom system (RCA₀).
- 2. For theorems of second-order arithmetic, find canonic representatives such that RCA₀ proves their equivalence.
- 3. Big Five: RCA_0 , WKL_0 , ACA_0 , ATR_0 and Π_1^1 –CA.

The idea behind reverse mathematics

- 1. Fix some weak axiom system (RCA₀).
- For theorems of second-order arithmetic, find canonic representatives such that RCA₀ proves their equivalence.
- 3. Big Five: RCA₀, WKL₀, ACA₀, ATR₀ and Π_1^1 -CA.

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Weihrauch reducibility:

- resource sensitive,
- varies under e.g. contraposition,
- absolute

- not resource sensitive,
- invariant under logical operations,
- not absolute

Let $f: \mathbf{X} \rightrightarrows \mathbf{Y}, g: \mathbf{U} \rightrightarrows \mathbf{Y}$

- $ightharpoonup \widehat{f}: \mathbf{X}^{\omega}
 ightharpoonup \mathbf{Y}^{\omega}$ (parallelization)
- ▶ $f \times g : \mathbf{X} \times \mathbf{U} \Rightarrow \mathbf{Y} \times \mathbf{V}$ (parallel product)
- ▶ $f \star g = \max\{f' \circ g' \mid f' \leq_{\mathbf{W}} f \land g' \leq_{\mathbf{W}} g\}$ (sequential product)

```
Let f: \mathbf{X} \rightrightarrows \mathbf{Y}, g: \mathbf{U} \rightrightarrows \mathbf{Y}

\blacktriangleright \hat{f}: \mathbf{X}^{\omega} \rightrightarrows \mathbf{Y}^{\omega} (parallelization)
```

- ► $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ (parallel product)
- ▶ $f \star g = \max\{f' \circ g' \mid f' \leq_{\mathbf{W}} f \land g' \leq_{\mathbf{W}} g\}$ (sequential product)

```
Let f: \mathbf{X} \rightrightarrows \mathbf{Y}, g: \mathbf{U} \rightrightarrows \mathbf{Y}
```

- $\widehat{f}: \mathbf{X}^{\omega} \rightrightarrows \mathbf{Y}^{\omega}$ (parallelization)
- ▶ $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ (parallel product)
- ▶ $f \star g = \max\{f' \circ g' \mid f' \leq_{\mathbf{W}} f \land g' \leq_{\mathbf{W}} g\}$ (sequential product)

```
Let f: \mathbf{X} \rightrightarrows \mathbf{Y}, g: \mathbf{U} \rightrightarrows \mathbf{Y}
```

- $ightharpoonup \widehat{f}: \mathbf{X}^{\omega}
 ightrightharpoonup \mathbf{Y}^{\omega}$ (parallelization)
- ▶ $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ (parallel product)
- ▶ $f \star g = \max\{f' \circ g' \mid f' \leq_W f \land g' \leq_W g\}$ (sequential product)

Definition

LPO : $\{0,1\}^{\mathbb{N}} \to \{0,1\}$ defined via LPO(0 $^{\omega}$) = 1 and LPO(p) = 0 for $p \neq 0^{\omega}$.

Definition

 $\lim :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ defined via $\lim(p)(n) = \lim_{k \to \infty} p(\langle n, k \rangle)$.

Observation

 $\lim =_{\mathbf{W}} \widehat{LPO}$

Definition

 $\chi_{\Pi_1^1}: \mathcal{A}(\mathbb{N}^\mathbb{N}) \to \{0,1\}$ defined via $\chi_{\Pi_1^1}(\emptyset) = 1$ and $\chi_{\Pi_1^1}(A) = 0$ if $A \neq \emptyset$.

Definition

 $\label{eq:LPO} \begin{array}{l} \mathrm{LPO}: \{0,1\}^{\mathbb{N}} \to \{0,1\} \text{ defined via } \mathrm{LPO}(0^{\omega}) = 1 \text{ and } \\ \mathrm{LPO}(p) = 0 \text{ for } p \neq 0^{\omega}. \end{array}$

Definition

 $\lim:\subseteq\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}} \text{ defined via } \lim(p)(n)=\lim_{k\to\infty}p(\langle n,k\rangle).$

Observation

 $\lim \equiv_{\mathbf{W}} \widehat{LPO}$

Definition

 $\chi_{\Pi_1^1}: \mathcal{A}(\mathbb{N}^{\mathbb{N}}) \to \{0,1\}$ defined via $\chi_{\Pi_1^1}(\emptyset) = 1$ and $\chi_{\Pi_1^1}(A) = 0$ if $A \neq \emptyset$.

Definition

 $\label{eq:LPO} \begin{array}{l} \mathrm{LPO}: \{0,1\}^{\mathbb{N}} \to \{0,1\} \text{ defined via } \mathrm{LPO}(0^{\omega}) = 1 \text{ and } \\ \mathrm{LPO}(p) = 0 \text{ for } p \neq 0^{\omega}. \end{array}$

Definition

 $\lim:\subseteq\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}} \text{ defined via } \lim(p)(n)=\lim_{k\to\infty}p(\langle n,k\rangle).$

Observation

 $\lim \equiv_{\mathbf{W}} \widehat{LPO}$

Definition

 $\chi_{\Pi_1^1}: \mathcal{A}(\mathbb{N}^\mathbb{N}) \to \{0,1\}$ defined via $\chi_{\Pi_1^1}(\emptyset) = 1$ and $\chi_{\Pi_1^1}(A) = 0$ if $A \neq \emptyset$.

Definition

LPO : $\{0,1\}^{\mathbb{N}} \to \{0,1\}$ defined via LPO(0 $^{\omega}$) = 1 and LPO(p) = 0 for $p \neq 0^{\omega}$.

Definition

 $\lim:\subseteq\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}} \text{ defined via } \lim(p)(n)=\lim_{k\to\infty}p(\langle n,k\rangle).$

Observation

 $\lim \equiv_{\mathrm{W}} \widehat{LPO}$

Definition

 $\chi_{\Pi_1^1}:\mathcal{A}(\mathbb{N}^\mathbb{N}) \to \{0,1\}$ defined via $\chi_{\Pi_1^1}(\emptyset)=1$ and $\chi_{\Pi_1^1}(A)=0$ if $A \neq \emptyset$.

Closed Choice

Definition (Closed choice)

 $\mathbf{C}_{\mathbf{X}}:\subseteq \mathcal{A}(\mathbf{X})
ightrightarrows \mathbf{X}$ defined via $A\in \mathsf{dom}(\mathbf{C}_{\mathbf{X}})$ if $A
eq \emptyset$ and $x\in \mathbf{C}_{\mathbf{X}}(A)$ iff $x\in A$.

Definition (Unique choice)

 UC_X is the restriction of C_X to singletons.

Closed Choice

Definition (Closed choice)

 $C_{\mathbf{X}}:\subseteq \mathcal{A}(\mathbf{X})
ightrightarrows \mathbf{X}$ defined via $A\in \mathsf{dom}(C_{\mathbf{X}})$ if $A
eq \emptyset$ and $x\in C_{\mathbf{X}}(A)$ iff $x\in A$.

Definition (Unique choice)

 UC_X is the restriction of C_X to singletons.

The correspondence

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 -CA	$\widehat{\chi}_{\Pi_1^1} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi}_{\Pi_1^1} \star \ldots \star \widehat{\chi}_{\Pi_1^1}$

Question (Marcone)

What Weihrauch degree corresponds to ATR₀?

The correspondence

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 -CA	$\widehat{\chi}_{\Pi_1^1} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi}_{\Pi_1^1} \star \ldots \star \widehat{\chi}_{\Pi_1^1}$

Question (Marcone)

What Weihrauch degree corresponds to ATR₀?

The correspondence

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathbf{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 – CA	$\widehat{\chi}_{\Pi_1^1} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi}_{\Pi_1^1} \star \ldots \star \widehat{\chi}_{\Pi_1^1}$

Question (Marcone)

What Weihrauch degree corresponds to ATR₀?

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathbf{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 -CA	$\widehat{\chi}_{\Pi_1^1} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi}_{\Pi_1^1} \star \ldots \star \widehat{\chi}_{\Pi_1^1}$

Question (Marcone)

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 – CA	$\widehat{\chi}_{\Pi_1^1} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi}_{\Pi_1^1} \star \ldots \star \widehat{\chi}_{\Pi_1^1}$

Question (Marcone)

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 -CA	$\widehat{\chi_{\Pi_1^1}} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi_{\Pi_1^1}} \star \ldots \star \widehat{\chi_{\Pi_1^1}}$

Question (Marcone)

Reverse math	Weihrauch degrees
RCA ₀	computable
WKL_0	$\mathrm{C}_{\{0,1\}^{\mathbb{N}}}$
ACA_0	$\lim \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \lim \star \ldots \star \lim$
ATR_0	???
Π_1^1 -CA	$\widehat{\chi_{\Pi_1^1}} \leq_{\mathrm{W}} T \leq_{\mathrm{W}} \widehat{\chi_{\Pi_1^1}} \star \ldots \star \widehat{\chi_{\Pi_1^1}}$

Question (Marcone)

Outline

The theorems

The context

The results

The problems I

Definition

Let $\operatorname{FindWS}_{\Sigma}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game where Player 1 has a winning strategy to a winning strategy (for Player 1).

Definition

Let $\operatorname{FindWS}_{\Pi}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map a Σ_{1}^{0} -game where Player 2 has a winning strategy to a winning strategy (for Player 2).

Definition

Let $\mathrm{Det}_{\Sigma}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game to a pair of strategies (σ, τ) such that either σ is winning for Player 1 or τ is winning for Player 2.

The problems I

Definition

Let $\operatorname{FindWS}_{\Sigma}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game where Player 1 has a winning strategy to a winning strategy (for Player 1).

Definition

Let $\operatorname{FindWS}_{\Pi}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game where Player 2 has a winning strategy to a winning strategy (for Player 2).

Definition

Let $\operatorname{Det}_{\Sigma}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ map a Σ_1^0 -game to a pair of strategies (σ, τ) such that either σ is winning for Player 1 or τ is winning for Player 2.

The problems I

Definition

Let $\operatorname{FindWS}_{\Sigma}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game where Player 1 has a winning strategy to a winning strategy (for Player 1).

Definition

Let $\operatorname{FindWS}_{\Pi}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game where Player 2 has a winning strategy to a winning strategy (for Player 2).

Definition

Let $\mathrm{Det}_{\Sigma}: \mathcal{O}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ map a Σ^0_1 -game to a pair of strategies (σ, τ) such that either σ is winning for Player 1 or τ is winning for Player 2.

The problems II

Definition

Let $\mathrm{List}:\subseteq \mathcal{A}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map \emptyset to 0^{ω} and countable non-empty A to some $\langle q_0, q_1, \ldots \rangle$ such that $A = \{q_i \mid i \in \mathbb{N}\}.$

Definition

Let $PTT_1 :\subseteq Trees \Rightarrow Trees$ map a tree T such that [T] is uncountable to some perfect subtree.

Definition

Let $PTT_2 : Trees \Rightarrow \mathbb{N}^{\mathbb{N}} \times Trees$ map a tree T to a pair (p, S) such that either $p \in List([T])$ or $S \in PTT_1(S)$.

The problems II

Definition

Let List : $\subseteq \mathcal{A}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map \emptyset to 0^{ω} and countable non-empty A to some $\langle q_0, q_1, \ldots \rangle$ such that $A = \{q_i \mid i \in \mathbb{N}\}.$

Definition

Let $PTT_1 :\subseteq Trees \Rightarrow Trees$ map a tree T such that [T] is uncountable to some perfect subtree.

Definition

Let $PTT_2 : Trees \Rightarrow \mathbb{N}^{\mathbb{N}} \times Trees$ map a tree T to a pair (p, S) such that either $p \in List([T])$ or $S \in PTT_1(S)$.

The problems II

Definition

Let $\mathrm{List}:\subseteq \mathcal{A}(\mathbb{N}^{\mathbb{N}}) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ map \emptyset to 0^{ω} and countable non-empty A to some $\langle q_0, q_1, \ldots \rangle$ such that $A = \{q_i \mid i \in \mathbb{N}\}.$

Definition

Let $PTT_1 :\subseteq Trees \Rightarrow Trees$ map a tree T such that [T] is uncountable to some perfect subtree.

Definition

Let $\operatorname{PTT}_2 : \operatorname{Trees} \rightrightarrows \mathbb{N}^{\mathbb{N}} \times \operatorname{Trees}$ map a tree T to a pair (p, S) such that either $p \in \operatorname{List}([T])$ or $S \in \operatorname{PTT}_1(S)$.

Theorem

 $UC_{\mathbb{N}^{\mathbb{N}}} \equiv_{W} FindWS_{\Sigma} \equiv_{W} List.$

Theorem

 $C_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathbb{W}} \text{FindWS}_{\Pi} \equiv_{\mathbb{W}} \text{PTT}_{1}$

 $(\mathrm{C}_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathrm{W}} \mathrm{PTT}_1$ due to Brattka and Marcone).

Theorem

 $UC_{\mathbb{N}^{\mathbb{N}}} \equiv_{W} FindWS_{\Sigma} \equiv_{W} List.$

Theorem

 $C_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathbf{W}} \text{FindWS}_{\Pi} \equiv_{\mathbf{W}} \text{PTT}_{1}.$

 $(C_{\mathbb{N}^{\mathbb{N}}} \equiv_{W} \text{PTT}_{1}$ due to Brattka and Marcone).

Observation

 $\chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{Det}_{\Sigma} \; \textit{and} \; \chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{PTT}_2$

Corollary

 $\operatorname{Det}_{\Sigma} \not\leq_{\operatorname{W}} C_{\mathbb{N}^{\mathbb{N}}}$ and $\operatorname{PTT}_{2} \not\leq_{\operatorname{W}} C_{\mathbb{N}^{\mathbb{N}}}$.

Corollary

 $\mathrm{Det}_{\Sigma} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}} \ \ \textit{and} \ \mathrm{PTT}_{2} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}}.$

Proposition

 $\operatorname{Det}_{\Sigma} \times \operatorname{Det}_{\Sigma} \nleq_{\operatorname{W}} \operatorname{Det}_{\Sigma} \text{ and } \operatorname{PTT}_{2} \times \operatorname{PTT}_{2} \nleq_{\operatorname{W}} \operatorname{PTT}_{2}.$

Observation

 $\chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{Det}_{\Sigma} \; \textit{and} \; \chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{PTT}_2$

Corollary

 $\mathrm{Det}_{\Sigma} \nleq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \ \text{and} \ \mathrm{PTT}_{2} \nleq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}}.$

Corollary

 $\mathrm{Det}_{\Sigma} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}} \ \ \textit{and} \ \mathrm{PTT}_{2} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}}.$

Proposition

 $\mathrm{Det}_{\Sigma} \times \mathrm{Det}_{\Sigma} \nleq_{\mathrm{W}} \mathrm{Det}_{\Sigma} \text{ and } \mathrm{PTT}_{2} \times \mathrm{PTT}_{2} \nleq_{\mathrm{W}} \mathrm{PTT}_{2}.$

Observation

 $\chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{Det}_{\Sigma} \ \textit{and} \ \chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{PTT}_2$

Corollary

 $\mathrm{Det}_{\Sigma} \nleq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \ \text{and} \ \mathrm{PTT}_{2} \nleq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}}.$

Corollary

 $\mathrm{Det}_{\Sigma} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}} \ \ \text{and} \ \mathrm{PTT}_{2} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}}.$

Proposition

 $\mathrm{Det}_{\Sigma} \times \mathrm{Det}_{\Sigma} \nleq_{\mathrm{W}} \mathrm{Det}_{\Sigma} \text{ and } \mathrm{PTT}_{2} \times \mathrm{PTT}_{2} \nleq_{\mathrm{W}} \mathrm{PTT}_{2}.$

Observation

 $\chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{Det}_{\Sigma} \ \textit{and} \ \chi_{\Pi_1^1} \leq_W \mathit{UC}_{\mathbb{N}^{\mathbb{N}}} \star \mathsf{PTT}_2$

Corollary

 $\mathrm{Det}_{\Sigma} \nleq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \text{ and } \mathrm{PTT}_{2} \nleq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}}.$

Corollary

 $\mathrm{Det}_{\Sigma} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}} \ \ \text{and} \ \mathrm{PTT}_{2} \leq_{\mathrm{W}} C_{\mathbb{N}^{\mathbb{N}}} \star \chi_{\Pi_{1}^{1}}.$

Proposition

 $\mathsf{Det}_\Sigma \times \mathsf{Det}_\Sigma \nleq_W \mathsf{Det}_\Sigma \text{ and } \mathsf{PTT}_2 \times \mathsf{PTT}_2 \nleq_W \mathsf{PTT}_2.$

The big question I

Question $Does Det_{\Sigma} \equiv_{W} PTT_{2} \ hold?$

An attempt

Definition

Let $t: \mathbf{Z} \to \{0,1\}$, $f:\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$ and $g:\subseteq \mathbf{A} \rightrightarrows \mathbf{B}$ with $\mathbf{X}, \mathbf{Y}, \mathbf{A}, \mathbf{B}$ being precomplete. Define

$$h := [\text{if } t \text{ then } f \text{ else } g] : \subseteq \mathbf{Z} \times \mathbf{X} \times \mathbf{A} \rightrightarrows \mathbf{Y} \rightrightarrows \mathbf{B}$$

via $(z, x, a) \in \text{dom}(h)$ if t(z) = 1 and $x \in \text{dom}(f)$ or t(z) = 0 and $a \in \text{dom}(g)$, and $(y, b) \in h(z, x, a)$ if t(z) = 1 and $y \in f(x)$ or t(z) = 0 and $b \in g(a)$.

The big question II

Observation

 $\begin{array}{l} \operatorname{Det}_{\Sigma} \leq_{\operatorname{W}} \left[\operatorname{if} \ \chi_{\Pi_{1}^{1}} \ \operatorname{then} \ UC_{\mathbb{N}^{\mathbb{N}}} \ \operatorname{else} \ C_{\mathbb{N}^{\mathbb{N}}} \right] \ \textit{and} \\ \operatorname{PTT}_{2} \leq_{\operatorname{W}} \left[\operatorname{if} \ \chi_{\Pi_{1}^{1}} \ \operatorname{then} \ UC_{\mathbb{N}^{\mathbb{N}}} \ \operatorname{else} \ C_{\mathbb{N}^{\mathbb{N}}} \right] \end{array}$

Question

 $egin{aligned} {\sf Does} & [{
m if} \ \chi_{\Pi^1_1} \ {
m then} \ {\it UC}_{\mathbb{N}^{\mathbb{N}}} \ {
m else} \ {\it C}_{\mathbb{N}^{\mathbb{N}}}] \leq_{
m W} {
m Det}_{\Sigma} \ {\it and/or} \ [{
m if} \ \chi_{\Pi^1_1} \ {
m then} \ {\it UC}_{\mathbb{N}^{\mathbb{N}}} \ {
m else} \ {\it C}_{\mathbb{N}^{\mathbb{N}}}] \leq_{
m W} {
m PTT}_2 \ {\it hold?} \end{aligned}$

The big question II

Observation

 $\begin{array}{l} \operatorname{Det}_{\Sigma} \leq_{\operatorname{W}} \left[\operatorname{if} \ \chi_{\Pi_{1}^{1}} \ \operatorname{then} \ UC_{\mathbb{N}^{\mathbb{N}}} \ \operatorname{else} \ C_{\mathbb{N}^{\mathbb{N}}} \right] \ \operatorname{and} \\ \operatorname{PTT}_{2} \leq_{\operatorname{W}} \left[\operatorname{if} \ \chi_{\Pi_{1}^{1}} \ \operatorname{then} \ UC_{\mathbb{N}^{\mathbb{N}}} \ \operatorname{else} \ C_{\mathbb{N}^{\mathbb{N}}} \right] \end{array}$

Question

 $\begin{array}{l} \textit{Does} \ [\text{if} \ \chi_{\Pi_1^1} \ \text{then} \ \textit{UC}_{\mathbb{N}^{\mathbb{N}}} \ \text{else} \ \textit{C}_{\mathbb{N}^{\mathbb{N}}}] \leq_{\mathbf{W}} \mathrm{Det}_{\Sigma} \ \textit{and/or} \\ [\text{if} \ \chi_{\Pi_1^1} \ \text{then} \ \textit{UC}_{\mathbb{N}^{\mathbb{N}}} \ \text{else} \ \textit{C}_{\mathbb{N}^{\mathbb{N}}}] \leq_{\mathbf{W}} \mathrm{PTT}_2 \ \textit{hold?} \end{array}$