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Open determinacy

Definition
A Σ0

1-game in NN is given by a winning condition W ⊆ N∗. Two
players take turns playing natural numbers. If the finite word w
of numbers played so far ever falls into W , Player 1 wins. If this
never happens, Player 2 wins.

Theorem
In every Σ0

1-game, one of the players has a winning strategy.
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Perfect Tree Theorem

Definition
A tree T ⊆ N∗ is perfect, if it is non-empty and for any v ∈ T
there are incomparable extensions v1, v2 ∈ T .

Theorem (Perfect Tree Theorem)
For any tree T , either [T ] is countable or T has a perfect
subtree.
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The idea behind Weihrauch reducibility

1. Identify a theorem

∀x ∈ X ∃y ∈ Y . D(x)⇒ T (x , y)

with the multi-valued function T :⊆ X⇒ Y, dom(T ) = D
obtained by Skolemization.

2. Then compare theorems via Weihrauch-reducibility to
learn about their constructive content.
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Weihrauch-reducibility
Definition
For f :⊆ X⇒ Y, g :⊆ V⇒W say

f ≤W g

iff there are computable H,K :⊆ NN → NN, such that
H〈idNN ,GK 〉 is a realizer of f for every realizer G of g.

Figure: Weihrauch reducibility



The idea behind reverse mathematics

1. Fix some weak axiom system (RCA0).
2. For theorems of second-order arithmetic, find canonic

representatives such that RCA0 proves their equivalence.
3. Big Five: RCA0, WKL0, ACA0, ATR0 and Π1

1−CA.
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Comparison

Weihrauch reducibility:
I resource sensitive,
I varies under e.g. contraposition,
I absolute

Reverse mathematics:
I not resource sensitive,
I invariant under logical operations,
I not absolute
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Operations on Weihrauch degrees

Let f : X⇒ Y, g : U⇒ Y
I f̂ : Xω ⇒ Yω (parallelization)
I f × g : X× U⇒ Y× V (parallel product)
I f ?g = max{f ′ ◦g′ | f ′ ≤W f ∧g′ ≤W g} (sequential product)
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Some special Weihrauch degrees

Definition
LPO : {0,1}N → {0,1} defined via LPO(0ω) = 1 and
LPO(p) = 0 for p 6= 0ω.

Definition
lim :⊆ NN → NN defined via lim(p)(n) = limk→∞ p(〈n, k〉).

Observation
lim ≡W L̂PO

Definition
χΠ1

1
: A(NN)→ {0,1} defined via χΠ1

1
(∅) = 1 and χΠ1

1
(A) = 0 if

A 6= ∅.
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Closed Choice

Definition (Closed choice)
CX :⊆ A(X)⇒ X defined via A ∈ dom(CX) if A 6= ∅ and
x ∈ CX(A) iff x ∈ A.

Definition (Unique choice)
UCX is the restriction of CX to singletons.
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The correspondence

Reverse math Weihrauch degrees
RCA0 computable
WKL0 C{0,1}N
ACA0 lim ≤W T ≤W lim ? . . . ? lim
ATR0 ???

Π1
1−CA χ̂Π1

1
≤W T ≤W χ̂Π1

1
? . . . ? χ̂Π1

1

Question (Marcone)
What Weihrauch degree corresponds to ATR0?
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The problems I

Definition
Let FindWSΣ : O(NN)⇒ NN map a Σ0

1-game where Player 1
has a winning strategy to a winning strategy (for Player 1).

Definition
Let FindWSΠ : O(NN)⇒ NN map a Σ0

1-game where Player 2
has a winning strategy to a winning strategy (for Player 2).

Definition
Let DetΣ : O(NN)⇒ NN × NN map a Σ0

1-game to a pair of
strategies (σ, τ) such that either σ is winning for Player 1 or τ is
winning for Player 2.
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The problems II

Definition
Let List :⊆ A(NN)⇒ NN map ∅ to 0ω and countable non-empty
A to some 〈q0,q1, . . .〉 such that A = {qi | i ∈ N}.

Definition
Let PTT1 :⊆ Trees⇒ Trees map a tree T such that [T ] is
uncountable to some perfect subtree.

Definition
Let PTT2 : Trees⇒ NN × Trees map a tree T to a pair (p,S)
such that either p ∈ List([T ]) or S ∈ PTT1(S).
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Classifications

Theorem
UCNN ≡W FindWSΣ ≡W List.

Theorem
CNN ≡W FindWSΠ ≡W PTT1.
(CNN ≡W PTT1 due to Brattka and Marcone).
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Classifications II

Observation
χΠ1

1
≤W UCNN ? DetΣ and χΠ1

1
≤W UCNN ? PTT2

Corollary
DetΣ �W CNN and PTT2 �W CNN .

Corollary
DetΣ ≤W CNN ? χΠ1

1
and PTT2 ≤W CNN ? χΠ1

1
.

Proposition
DetΣ × DetΣ �W DetΣ and PTT2 × PTT2 �W PTT2.
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The big question I

Question
Does DetΣ ≡W PTT2 hold?



An attempt

Definition
Let t : Z→ {0,1}, f :⊆ X⇒ Y and g :⊆ A⇒ B with X,Y,A,B
being precomplete. Define

h := [if t then f else g] :⊆ Z× X× A⇒ Y⇒ B

via (z, x ,a) ∈ dom(h) if t(z) = 1 and x ∈ dom(f ) or t(z) = 0
and a ∈ dom(g), and (y ,b) ∈ h(z, x ,a) if t(z) = 1 and y ∈ f (x)
or t(z) = 0 and b ∈ g(a).
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Observation
DetΣ ≤W [if χΠ1

1
then UCNN else CNN ] and

PTT2 ≤W [if χΠ1
1

then UCNN else CNN ]

Question
Does [if χΠ1

1
then UCNN else CNN ] ≤W DetΣ and/or

[if χΠ1
1

then UCNN else CNN ] ≤W PTT2 hold?
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