Fractal Intersections and Products via Algorithmic Dimension

Neil Lutz Rutgers University

June 26, 2017

Goal:

Use algorithmic information theory to answer fundamental questions in fractal geometry.

Agenda:

- Discuss classical and algorithmic notions of dimension.
- Describe a recent point-to-set principle that relates them.
- Describe a notion of conditional dimension.
- Apply these new tools bound the classical dimension of products and slices of fractals.
 - Special case of intersections one of the sets is a vertical line.

Informally, it's the number of free parameters: The number of parameters needed to specify an arbitrary element inside a set given a description for the set.

We want a way to quantitatively classify sets of measure zero.

Informally, it's the number of free parameters: The number of parameters needed to specify an arbitrary element inside a set given a description for the set.

We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but fails in the worst case. How much control does an adversary need to have over the environment to ensure failure?

How strongly does granularity affect measurement of the set?

 $\mbox{Image credit: Alexis Monnerot-Dumaine} \label{eq:number of boxes} \mbox{Let } N_\varepsilon = \mbox{number of boxes with side } \varepsilon \mbox{ needed to cover the set.}$

How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine

Let $N_{\varepsilon}=$ number of boxes with side ε needed to cover the set.

Consider
$$\lim_{\varepsilon \to 0} N_{\varepsilon} \cdot \varepsilon^s$$
.

How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine

Let $N_{\varepsilon}=$ number of boxes with side ε needed to cover the set.

Consider $\lim_{s\to 0} N_{\varepsilon} \cdot \varepsilon^s$.

Infinite for s=1 (infinite length) and 0 for s=2 (0 area).

How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine

Let $N_{\varepsilon}=$ number of boxes with side ε needed to cover the set.

Consider $\lim_{s\to 0} N_{\varepsilon} \cdot \varepsilon^s$.

Infinite for s=1 (infinite length) and 0 for s=2 (0 area).

In fact, the limit is positive and finite for <u>at most</u> one value of s.

The most standard, robust notion of fractal dimension.

The most standard, robust notion of fractal dimension.

 $H^s(E) = s$ -dimensional Hausdorff measure of a set $E \subseteq \mathbb{R}^n$. (Generalizes integer-dimensional Lebesgue outer measure)

The most standard, robust notion of fractal dimension.

 $H^s(E) = s$ -dimensional Hausdorff measure of a set $E \subseteq \mathbb{R}^n$. (Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

$$\dim_H(E) = \inf\{s : H^s(E) = 0\}.$$

The most standard, robust notion of fractal dimension.

 $H^s(E) = s$ -dimensional Hausdorff measure of a set $E \subseteq \mathbb{R}^n$. (Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

$$\dim_{H}(E) = \inf\{s : H^{s}(E) = 0\}.$$

$$H^{s}(E)$$

$$0$$

$$H^{s^{*}}(E) \in [0, \infty].$$

It is often difficult to prove lower bounds on $\dim_H(E)$.

Convenient fact: This set has Hausdorff dimension equal to its box-counting dimension.

Convenient fact: This set has Hausdorff dimension equal to its box-counting dimension.

 $\lim_{\varepsilon\to 0}N_\varepsilon\cdot\varepsilon^s \text{ can only be positive and finite for } s=\log 3,$ so the Sierpinski triangle has Hausdorff dimension $\log 3\approx 1.585.$

Convenient fact: This set has Hausdorff dimension equal to its box-counting dimension.

 $\lim_{\varepsilon\to 0}N_\varepsilon\cdot\varepsilon^s \text{ can only be positive and finite for } s=\log 3,$ so the Sierpinski triangle has Hausdorff dimension $\log 3\approx 1.585.$

In what sense is this the number of free parameters?

We can think of the first bit and second bit at each recursion level as two parameters. 2r bits approximate a point within $\approx 2^{-r}$ error.

We can think of the first bit and second bit at each recursion level as two parameters. 2r bits approximate a point within $\approx 2^{-r}$ error.

But for points within the fractal set, these parameters are not independent of each other. The 2r bits are compressible as data to length $\approx r\log 3$.

We can think of the first bit and second bit at each recursion level as two parameters. 2r bits approximate a point within $\approx 2^{-r}$ error.

But for points within the fractal set, these parameters are not independent of each other. The 2r bits are compressible as data to length $\approx r\log 3$.

In this sense, we only need $\log 3 \approx 1.585$ parameters to specify a point within the set.

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string $\sigma \in \{0,1\}^*$ is the length of the shortest binary program that outputs σ :

$$K(\sigma) = \min \{ |\pi| : U(\pi) = \sigma \},\,$$

where \boldsymbol{U} is a universal Turing machine.

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string $\sigma \in \{0,1\}^*$ is the length of the shortest binary program that outputs σ :

$$K(\sigma) = \min \{ |\pi| : U(\pi) = \sigma \},\,$$

where U is a universal Turing machine.

▶ It matters little which *U* is chosen for this.

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string $\sigma \in \{0,1\}^*$ is the length of the shortest binary program that outputs σ :

$$K(\sigma) = \min \{ |\pi| : U(\pi) = \sigma \},\,$$

where U is a universal Turing machine.

- ▶ It matters little which *U* is chosen for this.
- $K(\sigma) =$ amount of algorithmic information in σ .

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string $\sigma \in \{0,1\}^*$ is the length of the shortest binary program that outputs σ :

$$K(\sigma) = \min \{ |\pi| : U(\pi) = \sigma \},\,$$

where U is a universal Turing machine.

- ▶ It matters little which *U* is chosen for this.
- $K(\sigma) =$ amount of algorithmic information in σ .
- $K(\sigma) \le |\sigma| + o(|\sigma|).$

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string $\sigma \in \{0,1\}^*$ is the length of the shortest binary program that outputs σ :

$$K(\sigma) = \min \{ |\pi| : U(\pi) = \sigma \},\,$$

where U is a universal Turing machine.

- ▶ It matters little which *U* is chosen for this.
- $K(\sigma) =$ amount of algorithmic information in σ .
- $K(\sigma) \le |\sigma| + o(|\sigma|).$
- Extends naturally to other finite data objects
 - ightharpoonup e.g., points in \mathbb{Q}^n

Points in \mathbb{R}^n are infinite data objects.

Points in \mathbb{R}^n are infinite data objects.

The Kolmogorov complexity of a set $E\subseteq \mathbb{Q}^n$ is

$$K(E) = \min\{K(q) : q \in E\}.$$

(Shen and Vereschagin 2002)

Points in \mathbb{R}^n are infinite data objects.

The Kolmogorov complexity of a set $E\subseteq \mathbb{Q}^n$ is

$$K(E) = \min\{K(q) : q \in E\}.$$

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set $E \subseteq \mathbb{R}^n$ is

$$K(E) = K(E \cap \mathbb{Q}^n).$$

Points in \mathbb{R}^n are infinite data objects.

The Kolmogorov complexity of a set $E \subseteq \mathbb{Q}^n$ is

$$K(E) = \min\{K(q) : q \in E\}.$$

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set $E \subseteq \mathbb{R}^n$ is

$$K(E) = K(E \cap \mathbb{Q}^n)$$
.

Note that

$$E \subseteq F \Rightarrow K(E) \ge K(F)$$
.

Let $x \in \mathbb{R}^n$ and $r \in \mathbb{N}$. The Kolmogorov complexity of x at precision r is

$$K_r(x) = K(B_{2^{-r}}(x)),$$

i.e., the number of bits required to specify some rational point $q\in\mathbb{Q}^n$ such that $|q-x|\leq 2^{-r}$.

Let $x \in \mathbb{R}^n$ and $r \in \mathbb{N}$. The Kolmogorov complexity of x at precision r is

$$K_r(x) = K(B_{2^{-r}}(x)),$$

i.e., the number of bits required to specify some rational point $q \in \mathbb{Q}^n$ such that $|q - x| \le 2^{-r}$.

We say x is (algorithmically) random if $K_r(x) \ge nr - O(1)$.

Fact: Almost all points are random.

At precision $r, x \in \mathbb{R}^n$ has information density

$$0 \le \frac{K_r(x)}{r} \le n + o(1).$$

At precision r, $x \in \mathbb{R}^n$ has information density

$$0 \le \frac{K_r(x)}{r} \le n + o(1).$$

J. Lutz and Mayordomo: The algorithmic dimension of $x \in \mathbb{R}^n$ is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r} .$$

At precision r, $x \in \mathbb{R}^n$ has information density

$$0 \le \frac{K_r(x)}{r} \le n + o(1).$$

J. Lutz and Mayordomo: The algorithmic dimension of $x \in \mathbb{R}^n$ is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r} .$$

Examples:

▶ If x is computable, then there is a finite program that outputs x precisely, so $K_r(x) = O(1)$ and $\dim(x) = 0$.

At precision r, $x \in \mathbb{R}^n$ has information density

$$0 \le \frac{K_r(x)}{r} \le n + o(1).$$

J. Lutz and Mayordomo: The algorithmic dimension of $x \in \mathbb{R}^n$ is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r} .$$

Examples:

- ▶ If x is computable, then there is a finite program that outputs x precisely, so $K_r(x) = O(1)$ and $\dim(x) = 0$.
- ▶ If $x \in \mathbb{R}^n$ is random, then

$$nr - O(1) \le K_r(x) \le nr + o(r)$$
,

so
$$\dim(x) = n$$
.

At precision $r, x \in \mathbb{R}^n$ has information density

$$0 \le \frac{K_r(x)}{r} \le n + o(1).$$

J. Lutz and Mayordomo: The algorithmic dimension of $x \in \mathbb{R}^n$ is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r} .$$

Examples:

- ▶ If x is computable, then there is a finite program that outputs x precisely, so $K_r(x) = O(1)$ and $\dim(x) = 0$.
- ▶ If $x \in \mathbb{R}^n$ is random, then

$$nr - O(1) \le K_r(x) \le nr + o(r)$$
,

so
$$\dim(x) = n$$
.

The converse does not hold in either case.

Aren't points supposed to have dimension 0?

For the Sierpinski triangle T, we have

$$\dim_H(T) = \sup_{x \in T} \dim(x).$$

Aren't points supposed to have dimension 0?

For the Sierpinski triangle T, we have

$$\dim_H(T) = \sup_{x \in T} \dim(x).$$

This relationship does not hold in general: Consider the singleton $\{y\}$, where $y\in\mathbb{R}^n$ is random. Then $\dim_H(\{y\})=0$, but

$$\sup_{x \in \{y\}} \dim(x) = \dim(y) = n.$$

Aren't points supposed to have dimension 0?

For the Sierpinski triangle T, we have

$$\dim_H(T) = \sup_{x \in T} \dim(x).$$

This relationship does not hold in general: Consider the singleton $\{y\}$, where $y \in \mathbb{R}^n$ is random. Then $\dim_H(\{y\}) = 0$, but

$$\sup_{x \in \{y\}} \dim(x) = \dim(y) = n.$$

But we said dimension is the number of free parameters needed to specify a point given a description of the set.

The universal machine reading our program to estimate $x \in E$ ought to have access to a description of E.

The Kolmogorov complexity of a bitstring $\sigma \in \{0,1\}^*$ relative to an oracle $w \in \{0,1\}^\infty$ is

$$K^{w}(\sigma) = \min \left\{ |\pi| : U^{w}(\pi) = \sigma \right\},\,$$

where ${\cal U}$ is a universal oracle machine: It can query any bit of w as a computational step.

The Kolmogorov complexity of a bitstring $\sigma \in \{0,1\}^*$ relative to an oracle $w \in \{0,1\}^\infty$ is

$$K^{w}(\sigma) = \min \left\{ |\pi| : U^{w}(\pi) = \sigma \right\},\,$$

where ${\cal U}$ is a universal oracle machine: It can query any bit of w as a computational step.

The Kolmogorov complexity of a bitstring $\sigma \in \{0,1\}^*$ relative to an oracle $w \in \{0,1\}^\infty$ is

$$K^{w}(\sigma) = \min \left\{ |\pi| : U^{w}(\pi) = \sigma \right\},\,$$

where ${\cal U}$ is a universal oracle machine: It can query any bit of w as a computational step.

The dimension of a point $x \in \mathbb{R}^n$ relative to oracle w is

$$\dim^w(x) = \liminf_{r \to \infty} \frac{K_r^w(x)}{r}$$
.

The Kolmogorov complexity of a bitstring $\sigma \in \{0,1\}^*$ relative to an oracle $w \in \{0,1\}^\infty$ is

$$K^{w}(\sigma) = \min \left\{ |\pi| : U^{w}(\pi) = \sigma \right\},\,$$

where ${\cal U}$ is a universal oracle machine: It can query any bit of w as a computational step.

The dimension of a point $x \in \mathbb{R}^n$ relative to oracle w is

$$\dim^w(x) = \liminf_{r \to \infty} \frac{K_r^w(x)}{r}$$
.

▶ Note that the oracle can encode a point in \mathbb{R}^n .

The Kolmogorov complexity of a bitstring $\sigma \in \{0,1\}^*$ relative to an oracle $w \in \{0,1\}^\infty$ is

$$K^{w}(\sigma) = \min \left\{ |\pi| : U^{w}(\pi) = \sigma \right\},\,$$

where ${\cal U}$ is a universal oracle machine: It can query any bit of w as a computational step.

The dimension of a point $x \in \mathbb{R}^n$ relative to oracle w is

$$\dim^w(x) = \liminf_{r \to \infty} \frac{K_r^w(x)}{r}$$
.

- ▶ Note that the oracle can encode a point in \mathbb{R}^n .
- For all $x \in \mathbb{R}^n$, $\dim^x(x) = 0$.

Point-to-Set Principle (Lutz & Lutz '17)

For every set $E \subseteq \mathbb{R}^n$,

$$\dim_H(E) = \min_{w} \sup_{x \in E} \dim^w(x).$$

Point-to-Set Principle (Lutz & Lutz '17)

For every set $E \subseteq \mathbb{R}^n$,

$$\dim_H(E) = \min_{w} \sup_{x \in E} \dim^w(x)\,.$$
 classical Hausdorff dimension dimensions of individual points

Point-to-Set Principle (Lutz & Lutz '17)

For every set $E \subseteq \mathbb{R}^n$,

... In order to prove a lower bound

$$\dim_H(E) \geq \alpha$$
,

it is enough to show that for every oracle w and $\varepsilon>0,$ there is some point $x\in E$ with

$$\dim^w(x) > \alpha - \varepsilon$$
.

The conditional Kolomogorov complexity of $p \in \mathbb{Q}^m$ given $q \in \mathbb{Q}^n$:

$$K(p|q) = \min \left\{ |\pi| : \pi \in \{0,1\}^* \text{ and } U(\pi,q) = p \right\}.$$

The conditional Kolomogorov complexity of $p \in \mathbb{Q}^m$ given $q \in \mathbb{Q}^n$:

$$K(p|q) = \min\{|\pi| : \pi \in \{0,1\}^* \text{ and } U(\pi,q) = p\}.$$

The conditional Kolmogorov complexity of $E \subseteq \mathbb{Q}^m$ given $F \subseteq \mathbb{Q}^n$:

$$K(E|F) = \max_{q \in F} \min_{p \in E} K(p|q) .$$

The conditional Kolomogorov complexity of $p \in \mathbb{Q}^m$ given $q \in \mathbb{Q}^n$:

$$K(p|q) = \min\{|\pi| : \pi \in \{0,1\}^* \text{ and } U(\pi,q) = p\}.$$

The conditional Kolmogorov complexity of $E \subseteq \mathbb{Q}^m$ given $F \subseteq \mathbb{Q}^n$:

$$K(E|F) = \max_{q \in F} \min_{p \in E} K(p|q).$$

The conditional Kolmogorov complexity of $x \in \mathbb{R}^m$ at precision y given $y \in \mathbb{R}^n$ at precision s:

$$K_{r,s}(x|y) = K(B_{2^{-r}}(x)|B_{2^{-s}}(y)).$$

Definition (Lutz & Lutz '17)

The conditional dimension of $x \in \mathbb{R}^m$ given $y \in \mathbb{R}^n$ is

$$\dim(x|y) = \liminf_{r \to \infty} \frac{K_{r,r}(x|y)}{r}.$$

Definition (Lutz & Lutz '17)

The conditional dimension of $x \in \mathbb{R}^m$ given $y \in \mathbb{R}^n$ is

$$\dim(x|y) = \liminf_{r \to \infty} \frac{K_{r,r}(x|y)}{r}$$
.

- ▶ Obeys a chain rule: $\dim(x,y) \ge \dim(x|y) + \dim(y)$.
- ▶ Bounded below by relative dimension: $\dim(x|y) \ge \dim^y(x)$.

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Easy for Borel sets. Was significantly more difficult for general sets.

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

and for every $\varepsilon>0$ there exist $x\in E$ and $y\in F$ such that

$$\dim^w(x) \ge \dim_H(E) - \varepsilon$$
 and $\dim^{w,x}(y) \ge \dim_H(F) - \varepsilon$.

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

and for every $\varepsilon>0$ there exist $x\in E$ and $y\in F$ such that

$$\dim^w(x) \ge \dim_H(E) - \varepsilon$$
 and $\dim^{w,x}(y) \ge \dim_H(F) - \varepsilon$.

$$\dim_H(E \times F) \ge \dim^w(x,y)$$

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

and for every $\varepsilon>0$ there exist $x\in E$ and $y\in F$ such that

$$\dim^w(x) \ge \dim_H(E) - \varepsilon$$
 and $\dim^{w,x}(y) \ge \dim_H(F) - \varepsilon$.

$$\dim_{H}(E \times F) \ge \dim^{w}(x, y)$$
$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

and for every $\varepsilon > 0$ there exist $x \in E$ and $y \in F$ such that

$$\dim^w(x) \ge \dim_H(E) - \varepsilon$$
 and $\dim^{w,x}(y) \ge \dim_H(F) - \varepsilon$.

$$\dim_{H}(E \times F) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w,x}(y)$$

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

and for every $\varepsilon > 0$ there exist $x \in E$ and $y \in F$ such that

$$\dim^w(x) \ge \dim_H(E) - \varepsilon$$
 and $\dim^{w,x}(y) \ge \dim_H(F) - \varepsilon$.

$$\dim_{H}(E \times F) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w,x}(y)$$

$$\ge \dim_{H}(E) + \dim_{H}(F) - 2\varepsilon.$$

For all $E \subseteq \mathbb{R}^m$ and $F \subseteq \mathbb{R}^n$,

$$\dim_H(E \times F) \ge \dim_H(E) + \dim_H(F)$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_{H}(E \times F) = \sup_{(x,y) \in E \times F} \dim^{w}(x,y),$$

and for every $\varepsilon>0$ there exist $x\in E$ and $y\in F$ such that

$$\dim^w(x) \ge \dim_H(E) - \varepsilon$$
 and $\dim^{w,x}(y) \ge \dim_H(F) - \varepsilon$.

$$\dim_{H}(E \times F) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w,x}(y)$$

$$\ge \dim_{H}(E) + \dim_{H}(F) - 2\varepsilon.$$

Slicing Theorem (Marstrand 1954)

Let $E \subseteq \mathbb{R}^2$ be a Borel set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

and for all $\varepsilon>0$ and $x\in\mathbb{R}$, there is a point $(x,y)\in E_x$ such that

$$\dim^{w,x}(x,y) \ge \dim_H(E_x) - \varepsilon$$
.

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

Since
$$(x,y) \in E$$
, we have

$$\dim_H(E) \ge \dim^w(x,y)$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

Since
$$(x,y) \in E$$
, we have

$$\dim_H(E) \ge \dim^w(x, y)$$

$$\ge \dim^w(x) + \dim^w(y|x)$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

Since
$$(x,y) \in E$$
, we have

$$\dim_{H}(E) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w,x}(y)$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

Since
$$(x,y) \in E$$
, we have

$$\dim_{H}(E) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w, x}(y)$$

$$= \dim^{w}(x) + \dim^{w, x}(x, y)$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \le \dim_H(E) - 1.$$

Proof. By the point-to-set principle, there is an oracle \boldsymbol{w} such that

$$\dim_{H}(E) = \sup_{(x,y)\in E} \dim^{w}(x,y),$$

Since
$$(x,y) \in E$$
, we have

$$\dim_{H}(E) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w,x}(y)$$

$$= \dim^{w}(x) + \dim^{w,x}(x, y)$$

$$\ge \dim^{w}(x) + \dim_{H}(E_{x}) - \varepsilon.$$

Let $E \subseteq \mathbb{R}^2$ be any set with $\dim_H(E) \ge 1$, and let E_x be the vertical slice of E at x. Then for almost all $x \in \mathbb{R}$,

$$\dim_H(E_x) \leq \dim_H(E) - 1$$
.

Proof. By the point-to-set principle, there is an oracle w such that

$$\dim_H(E)=\sup_{(x,y)\in E}\dim^w(x,y)\,,$$
 and for all $\varepsilon>0$ and $x\in\mathbb{R}$, there is a point $(x,y)\in E_x$ such that

 $\dim^{w,x}(x,y) > \dim_H(E_x) - \varepsilon$.

Since $(x,y) \in E$, we have

$$\dim_{H}(E) \ge \dim^{w}(x, y)$$

$$\ge \dim^{w}(x) + \dim^{w}(y|x)$$

$$\ge \dim^{w}(x) + \dim^{w,x}(y)$$

$$= \dim^{w}(x) + \dim^{w,x}(x, y)$$

$$\ge \dim^{w}(x) + \dim_{H}(E_{x}) - \varepsilon.$$

Recall that $\dim^w(x)=1$ for almost all $x\in\mathbb{R}$, and let $\varepsilon\to 0$.

Algorithmic dimension provides a simple, intuitive, and powerful approach to problems in classical fractal geometry.

► This approach has also been used to bound the dimension of generalized Furstenberg sets (related to Kakeya sets).

- ► This approach has also been used to bound the dimension of generalized Furstenberg sets (related to Kakeya sets).
- Although the simple proofs in this work operated at the "higher level" of dimension, that proof is significantly more involved and reasons about Kolmogorov complexity directly.

- ► This approach has also been used to bound the dimension of generalized Furstenberg sets (related to Kakeya sets).
- Although the simple proofs in this work operated at the "higher level" of dimension, that proof is significantly more involved and reasons about Kolmogorov complexity directly.
- ➤ Objective: Further strengthen the connections between geometric measure theory and algorithmic information theory, i.e., generalize and refine the point-to-set principle.

- ► This approach has also been used to bound the dimension of generalized Furstenberg sets (related to Kakeya sets).
- Although the simple proofs in this work operated at the "higher level" of dimension, that proof is significantly more involved and reasons about Kolmogorov complexity directly.
- ➤ Objective: Further strengthen the connections between geometric measure theory and algorithmic information theory, i.e., generalize and refine the point-to-set principle.
- Broader project: Systematically re-examine the foundations of fractal geometry through this pointwise lens.