
Fractal Intersections and Products via
Algorithmic Dimension

Neil Lutz
Rutgers University

June 26, 2017

Goal:
Use algorithmic information theory to answer fundamental
questions in fractal geometry.

Agenda:
I Discuss classical and algorithmic notions of dimension.
I Describe a recent point-to-set principle that relates them.
I Describe a notion of conditional dimension.
I Apply these new tools bound the classical dimension of

products and slices of fractals.
I Special case of intersections — one of the sets is a vertical line.

What is dimension?

Informally, it’s the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2 1 ???

We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but
fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?

What is dimension?

Informally, it’s the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2

1 ???
We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but
fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?

What is dimension?

Informally, it’s the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2 1

???
We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but
fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?

What is dimension?

Informally, it’s the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2 1 ???

We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but
fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?

What is dimension?

Informally, it’s the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2 1 ???
We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but
fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?

What is dimension?

Informally, it’s the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2 1 ???
We want a way to quantitatively classify sets of measure zero.

Example: Suppose an algorithm succeeds with probability 1 but
fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?

Fractal Dimension: Measure Theoretic Approach
How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine
Let Nε = number of boxes with side ε needed to cover the set.

Consider lim
ε→0

Nε · εs.
Infinite for s = 1 (infinite length) and 0 for s = 2 (0 area).
In fact, the limit is positive and finite for at most one value of s.

Fractal Dimension: Measure Theoretic Approach
How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine
Let Nε = number of boxes with side ε needed to cover the set.

Consider lim
ε→0

Nε · εs.

Infinite for s = 1 (infinite length) and 0 for s = 2 (0 area).
In fact, the limit is positive and finite for at most one value of s.

Fractal Dimension: Measure Theoretic Approach
How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine
Let Nε = number of boxes with side ε needed to cover the set.

Consider lim
ε→0

Nε · εs.
Infinite for s = 1 (infinite length) and 0 for s = 2 (0 area).

In fact, the limit is positive and finite for at most one value of s.

Fractal Dimension: Measure Theoretic Approach
How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine
Let Nε = number of boxes with side ε needed to cover the set.

Consider lim
ε→0

Nε · εs.
Infinite for s = 1 (infinite length) and 0 for s = 2 (0 area).
In fact, the limit is positive and finite for at most one value of s.

Hausdorff Dimension
The most standard, robust notion of fractal dimension.

Hs(E) = s-dimensional Hausdorff measure of a set E ⊆ Rn.
(Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

dimH(E) = inf{s : Hs(E) = 0} .

∞

0

Hs∗(E) ∈ [0,∞].

Hs(E)

ss∗

It is often difficult to prove lower bounds on dimH(E).

Hausdorff Dimension
The most standard, robust notion of fractal dimension.

Hs(E) = s-dimensional Hausdorff measure of a set E ⊆ Rn.
(Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

dimH(E) = inf{s : Hs(E) = 0} .

∞

0

Hs∗(E) ∈ [0,∞].

Hs(E)

ss∗

It is often difficult to prove lower bounds on dimH(E).

Hausdorff Dimension
The most standard, robust notion of fractal dimension.

Hs(E) = s-dimensional Hausdorff measure of a set E ⊆ Rn.
(Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

dimH(E) = inf{s : Hs(E) = 0} .

∞

0

Hs∗(E) ∈ [0,∞].

Hs(E)

ss∗

It is often difficult to prove lower bounds on dimH(E).

Hausdorff Dimension
The most standard, robust notion of fractal dimension.

Hs(E) = s-dimensional Hausdorff measure of a set E ⊆ Rn.
(Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

dimH(E) = inf{s : Hs(E) = 0} .

∞

0

Hs∗(E) ∈ [0,∞].

Hs(E)

ss∗

It is often difficult to prove lower bounds on dimH(E).

Example: Dimension of the Sierpinski triangle
Convenient fact: This set has Hausdorff dimension equal to its
box-counting dimension.

Nε = θ(ε− log 3)

lim
ε→0

Nε · εs can only be positive and finite for s = log 3,
so the Sierpinski triangle has Hausdorff dimension log 3 ≈ 1.585.

In what sense is this the number of free parameters?

Example: Dimension of the Sierpinski triangle
Convenient fact: This set has Hausdorff dimension equal to its
box-counting dimension.

Nε = θ(ε− log 3)

lim
ε→0

Nε · εs can only be positive and finite for s = log 3,
so the Sierpinski triangle has Hausdorff dimension log 3 ≈ 1.585.

In what sense is this the number of free parameters?

Example: Dimension of the Sierpinski triangle
Convenient fact: This set has Hausdorff dimension equal to its
box-counting dimension.

Nε = θ(ε− log 3)

lim
ε→0

Nε · εs can only be positive and finite for s = log 3,
so the Sierpinski triangle has Hausdorff dimension log 3 ≈ 1.585.

In what sense is this the number of free parameters?

Example: Dimension of the Sierpinski triangle

00

01 10 11

01 11 00 11 01 11
We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ≈ 2−r error.

But for points within the fractal set, these parameters are not
independent of each other. The 2r bits are compressible as data to
length ≈ r log 3.

In this sense, we only need log 3 ≈ 1.585 parameters to specify a
point within the set.

Example: Dimension of the Sierpinski triangle

00

01 10 11

01 11 00 11 01 11
We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ≈ 2−r error.

But for points within the fractal set, these parameters are not
independent of each other. The 2r bits are compressible as data to
length ≈ r log 3.

In this sense, we only need log 3 ≈ 1.585 parameters to specify a
point within the set.

Example: Dimension of the Sierpinski triangle

00

01 10 11
01 11 00 11 01 11

We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ≈ 2−r error.

But for points within the fractal set, these parameters are not
independent of each other. The 2r bits are compressible as data to
length ≈ r log 3.

In this sense, we only need log 3 ≈ 1.585 parameters to specify a
point within the set.

Example: Dimension of the Sierpinski triangle

00

01 10 11
01 11 00 11 01 11

We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ≈ 2−r error.

But for points within the fractal set, these parameters are not
independent of each other. The 2r bits are compressible as data to
length ≈ r log 3.

In this sense, we only need log 3 ≈ 1.585 parameters to specify a
point within the set.

Example: Dimension of the Sierpinski triangle

00

01 10 11
01 11 00 11 01 11

We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ≈ 2−r error.

But for points within the fractal set, these parameters are not
independent of each other. The 2r bits are compressible as data to
length ≈ r log 3.

In this sense, we only need log 3 ≈ 1.585 parameters to specify a
point within the set.

Example: Dimension of the Sierpinski triangle

00

01 10 11
01 11 00 11 01 11

We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ≈ 2−r error.

But for points within the fractal set, these parameters are not
independent of each other. The 2r bits are compressible as data to
length ≈ r log 3.

In this sense, we only need log 3 ≈ 1.585 parameters to specify a
point within the set.

Algorithmic Information in Bit Strings

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string σ ∈ {0, 1}∗ is the
length of the shortest binary program that outputs σ:

K(σ) = min
{
|π| : U(π) = σ

}
,

where U is a universal Turing machine.

I It matters little which U is chosen for this.
I K(σ) = amount of algorithmic information in σ.
I K(σ) ≤ |σ|+ o(|σ|).
I Extends naturally to other finite data objects

I e.g., points in Qn

Algorithmic Information in Bit Strings

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string σ ∈ {0, 1}∗ is the
length of the shortest binary program that outputs σ:

K(σ) = min
{
|π| : U(π) = σ

}
,

where U is a universal Turing machine.
I It matters little which U is chosen for this.

I K(σ) = amount of algorithmic information in σ.
I K(σ) ≤ |σ|+ o(|σ|).
I Extends naturally to other finite data objects

I e.g., points in Qn

Algorithmic Information in Bit Strings

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string σ ∈ {0, 1}∗ is the
length of the shortest binary program that outputs σ:

K(σ) = min
{
|π| : U(π) = σ

}
,

where U is a universal Turing machine.
I It matters little which U is chosen for this.
I K(σ) = amount of algorithmic information in σ.

I K(σ) ≤ |σ|+ o(|σ|).
I Extends naturally to other finite data objects

I e.g., points in Qn

Algorithmic Information in Bit Strings

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string σ ∈ {0, 1}∗ is the
length of the shortest binary program that outputs σ:

K(σ) = min
{
|π| : U(π) = σ

}
,

where U is a universal Turing machine.
I It matters little which U is chosen for this.
I K(σ) = amount of algorithmic information in σ.
I K(σ) ≤ |σ|+ o(|σ|).

I Extends naturally to other finite data objects
I e.g., points in Qn

Algorithmic Information in Bit Strings

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string σ ∈ {0, 1}∗ is the
length of the shortest binary program that outputs σ:

K(σ) = min
{
|π| : U(π) = σ

}
,

where U is a universal Turing machine.
I It matters little which U is chosen for this.
I K(σ) = amount of algorithmic information in σ.
I K(σ) ≤ |σ|+ o(|σ|).
I Extends naturally to other finite data objects

I e.g., points in Qn

Algorithmic Information in Euclidean Spaces

Points in Rn are infinite data objects.

The Kolmogorov complexity of a set E ⊆ Qn is

K(E) = min{K(q) : q ∈ E} .

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set E ⊆ Rn is

K(E) = K(E ∩Qn) .

Note that
E ⊆ F ⇒ K(E) ≥ K(F) .

Algorithmic Information in Euclidean Spaces

Points in Rn are infinite data objects.

The Kolmogorov complexity of a set E ⊆ Qn is

K(E) = min{K(q) : q ∈ E} .

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set E ⊆ Rn is

K(E) = K(E ∩Qn) .

Note that
E ⊆ F ⇒ K(E) ≥ K(F) .

Algorithmic Information in Euclidean Spaces

Points in Rn are infinite data objects.

The Kolmogorov complexity of a set E ⊆ Qn is

K(E) = min{K(q) : q ∈ E} .

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set E ⊆ Rn is

K(E) = K(E ∩Qn) .

Note that
E ⊆ F ⇒ K(E) ≥ K(F) .

Algorithmic Information in Euclidean Spaces

Points in Rn are infinite data objects.

The Kolmogorov complexity of a set E ⊆ Qn is

K(E) = min{K(q) : q ∈ E} .

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set E ⊆ Rn is

K(E) = K(E ∩Qn) .

Note that
E ⊆ F ⇒ K(E) ≥ K(F) .

Algorithmic Information in Euclidean Spaces

Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = K
(
B2−r (x)

)
,

i.e., the number of bits required to specify some rational point
q ∈ Qn such that |q − x| ≤ 2−r.

We say x is (algorithmically) random if Kr(x) ≥ nr −O(1).

Fact: Almost all points are random.

Algorithmic Information in Euclidean Spaces

Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = K
(
B2−r (x)

)
,

i.e., the number of bits required to specify some rational point
q ∈ Qn such that |q − x| ≤ 2−r.

We say x is (algorithmically) random if Kr(x) ≥ nr −O(1).

Fact: Almost all points are random.

Algorithmic Dimension
At precision r, x ∈ Rn has information density

0 ≤ Kr(x)
r
≤ n+ o(1) .

J. Lutz and Mayordomo: The algorithmic dimension of x ∈ Rn is

dim(x) = lim inf
r→∞

Kr(x)
r

.

Examples:
I If x is computable, then there is a finite program that outputs
x precisely, so Kr(x) = O(1) and dim(x) = 0.

I If x ∈ Rn is random, then

nr −O(1) ≤ Kr(x) ≤ nr + o(r) ,

so dim(x) = n.
I The converse does not hold in either case.

Algorithmic Dimension
At precision r, x ∈ Rn has information density

0 ≤ Kr(x)
r
≤ n+ o(1) .

J. Lutz and Mayordomo: The algorithmic dimension of x ∈ Rn is

dim(x) = lim inf
r→∞

Kr(x)
r

.

Examples:
I If x is computable, then there is a finite program that outputs
x precisely, so Kr(x) = O(1) and dim(x) = 0.

I If x ∈ Rn is random, then

nr −O(1) ≤ Kr(x) ≤ nr + o(r) ,

so dim(x) = n.
I The converse does not hold in either case.

Algorithmic Dimension
At precision r, x ∈ Rn has information density

0 ≤ Kr(x)
r
≤ n+ o(1) .

J. Lutz and Mayordomo: The algorithmic dimension of x ∈ Rn is

dim(x) = lim inf
r→∞

Kr(x)
r

.

Examples:
I If x is computable, then there is a finite program that outputs
x precisely, so Kr(x) = O(1) and dim(x) = 0.

I If x ∈ Rn is random, then

nr −O(1) ≤ Kr(x) ≤ nr + o(r) ,

so dim(x) = n.
I The converse does not hold in either case.

Algorithmic Dimension
At precision r, x ∈ Rn has information density

0 ≤ Kr(x)
r
≤ n+ o(1) .

J. Lutz and Mayordomo: The algorithmic dimension of x ∈ Rn is

dim(x) = lim inf
r→∞

Kr(x)
r

.

Examples:
I If x is computable, then there is a finite program that outputs
x precisely, so Kr(x) = O(1) and dim(x) = 0.

I If x ∈ Rn is random, then

nr −O(1) ≤ Kr(x) ≤ nr + o(r) ,

so dim(x) = n.

I The converse does not hold in either case.

Algorithmic Dimension
At precision r, x ∈ Rn has information density

0 ≤ Kr(x)
r
≤ n+ o(1) .

J. Lutz and Mayordomo: The algorithmic dimension of x ∈ Rn is

dim(x) = lim inf
r→∞

Kr(x)
r

.

Examples:
I If x is computable, then there is a finite program that outputs
x precisely, so Kr(x) = O(1) and dim(x) = 0.

I If x ∈ Rn is random, then

nr −O(1) ≤ Kr(x) ≤ nr + o(r) ,

so dim(x) = n.
I The converse does not hold in either case.

Aren’t points supposed to have dimension 0?

For the Sierpinski triangle T , we have

dimH(T) = sup
x∈T

dim(x) .

This relationship does not hold in general: Consider the singleton
{y}, where y ∈ Rn is random. Then dimH({y}) = 0, but

sup
x∈{y}

dim(x) = dim(y) = n .

But we said dimension is the number of free parameters needed to
specify a point given a description of the set.

The universal machine reading our program to estimate x ∈ E
ought to have access to a description of E.

Aren’t points supposed to have dimension 0?

For the Sierpinski triangle T , we have

dimH(T) = sup
x∈T

dim(x) .

This relationship does not hold in general: Consider the singleton
{y}, where y ∈ Rn is random. Then dimH({y}) = 0, but

sup
x∈{y}

dim(x) = dim(y) = n .

But we said dimension is the number of free parameters needed to
specify a point given a description of the set.

The universal machine reading our program to estimate x ∈ E
ought to have access to a description of E.

Aren’t points supposed to have dimension 0?

For the Sierpinski triangle T , we have

dimH(T) = sup
x∈T

dim(x) .

This relationship does not hold in general: Consider the singleton
{y}, where y ∈ Rn is random. Then dimH({y}) = 0, but

sup
x∈{y}

dim(x) = dim(y) = n .

But we said dimension is the number of free parameters needed to
specify a point given a description of the set.

The universal machine reading our program to estimate x ∈ E
ought to have access to a description of E.

Relative Dimension

The Kolmogorov complexity of a bitstring σ ∈ {0, 1}∗ relative to
an oracle w ∈ {0, 1}∞ is

Kw(σ) = min
{
|π| : Uw(π) = σ

}
,

where U is a universal oracle machine: It can query any bit of w as
a computational step.

The dimension of a point x ∈ Rn relative to oracle w is

dimw(x) = lim inf
r→∞

Kw
r (x)
r

.

I Note that the oracle can encode a point in Rn.
I For all x ∈ Rn, dimx(x) = 0.

Relative Dimension

The Kolmogorov complexity of a bitstring σ ∈ {0, 1}∗ relative to
an oracle w ∈ {0, 1}∞ is

Kw(σ) = min
{
|π| : Uw(π) = σ

}
,

where U is a universal oracle machine: It can query any bit of w as
a computational step.

The dimension of a point x ∈ Rn relative to oracle w is

dimw(x) = lim inf
r→∞

Kw
r (x)
r

.

I Note that the oracle can encode a point in Rn.
I For all x ∈ Rn, dimx(x) = 0.

Relative Dimension

The Kolmogorov complexity of a bitstring σ ∈ {0, 1}∗ relative to
an oracle w ∈ {0, 1}∞ is

Kw(σ) = min
{
|π| : Uw(π) = σ

}
,

where U is a universal oracle machine: It can query any bit of w as
a computational step.

The dimension of a point x ∈ Rn relative to oracle w is

dimw(x) = lim inf
r→∞

Kw
r (x)
r

.

I Note that the oracle can encode a point in Rn.
I For all x ∈ Rn, dimx(x) = 0.

Relative Dimension

The Kolmogorov complexity of a bitstring σ ∈ {0, 1}∗ relative to
an oracle w ∈ {0, 1}∞ is

Kw(σ) = min
{
|π| : Uw(π) = σ

}
,

where U is a universal oracle machine: It can query any bit of w as
a computational step.

The dimension of a point x ∈ Rn relative to oracle w is

dimw(x) = lim inf
r→∞

Kw
r (x)
r

.

I Note that the oracle can encode a point in Rn.

I For all x ∈ Rn, dimx(x) = 0.

Relative Dimension

The Kolmogorov complexity of a bitstring σ ∈ {0, 1}∗ relative to
an oracle w ∈ {0, 1}∞ is

Kw(σ) = min
{
|π| : Uw(π) = σ

}
,

where U is a universal oracle machine: It can query any bit of w as
a computational step.

The dimension of a point x ∈ Rn relative to oracle w is

dimw(x) = lim inf
r→∞

Kw
r (x)
r

.

I Note that the oracle can encode a point in Rn.
I For all x ∈ Rn, dimx(x) = 0.

Point-to-Set Principle (Lutz & Lutz ’17)
For every set E ⊆ Rn,

dimH(E) = min
w

sup
x∈E

dimw(x) .

classical Hausdorff
dimension

dimensions of
individual points

∴ In order to prove a lower bound

dimH(E) ≥ α ,

it is enough to show that for every oracle w and ε > 0, there is
some point x ∈ E with

dimw(x) ≥ α− ε .

Point-to-Set Principle (Lutz & Lutz ’17)
For every set E ⊆ Rn,

dimH(E) = min
w

sup
x∈E

dimw(x) .

classical Hausdorff
dimension

dimensions of
individual points

∴ In order to prove a lower bound

dimH(E) ≥ α ,

it is enough to show that for every oracle w and ε > 0, there is
some point x ∈ E with

dimw(x) ≥ α− ε .

Point-to-Set Principle (Lutz & Lutz ’17)
For every set E ⊆ Rn,

dimH(E) = min
w

sup
x∈E

dimw(x) .

classical Hausdorff
dimension

dimensions of
individual points

∴ In order to prove a lower bound

dimH(E) ≥ α ,

it is enough to show that for every oracle w and ε > 0, there is
some point x ∈ E with

dimw(x) ≥ α− ε .

Conditional Dimension

The conditional Kolomogorov complexity of p ∈ Qm given q ∈ Qn:

K(p|q) = min
{
|π| : π ∈ {0, 1}∗ and U(π, q) = p

}
.

The conditional Kolmogorov complexity of E ⊆ Qm given F ⊆ Qn:

K(E|F) = max
q∈F

min
p∈E

K(p|q) .

The conditional Kolmogorov complexity of x ∈ Rm at precision y
given y ∈ Rn at precision s:

Kr,s(x|y) = K(B2−r (x)|B2−s(y)) .

Conditional Dimension

The conditional Kolomogorov complexity of p ∈ Qm given q ∈ Qn:

K(p|q) = min
{
|π| : π ∈ {0, 1}∗ and U(π, q) = p

}
.

The conditional Kolmogorov complexity of E ⊆ Qm given F ⊆ Qn:

K(E|F) = max
q∈F

min
p∈E

K(p|q) .

The conditional Kolmogorov complexity of x ∈ Rm at precision y
given y ∈ Rn at precision s:

Kr,s(x|y) = K(B2−r (x)|B2−s(y)) .

Conditional Dimension

The conditional Kolomogorov complexity of p ∈ Qm given q ∈ Qn:

K(p|q) = min
{
|π| : π ∈ {0, 1}∗ and U(π, q) = p

}
.

The conditional Kolmogorov complexity of E ⊆ Qm given F ⊆ Qn:

K(E|F) = max
q∈F

min
p∈E

K(p|q) .

The conditional Kolmogorov complexity of x ∈ Rm at precision y
given y ∈ Rn at precision s:

Kr,s(x|y) = K(B2−r (x)|B2−s(y)) .

Conditional Dimension

Definition (Lutz & Lutz ’17)
The conditional dimension of x ∈ Rm given y ∈ Rn is

dim(x|y) = lim inf
r→∞

Kr,r(x|y)
r

.

I Obeys a chain rule: dim(x, y) ≥ dim(x|y) + dim(y).
I Bounded below by relative dimension: dim(x|y) ≥ dimy(x).

Conditional Dimension

Definition (Lutz & Lutz ’17)
The conditional dimension of x ∈ Rm given y ∈ Rn is

dim(x|y) = lim inf
r→∞

Kr,r(x|y)
r

.

I Obeys a chain rule: dim(x, y) ≥ dim(x|y) + dim(y).
I Bounded below by relative dimension: dim(x|y) ≥ dimy(x).

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

F

E

E × F

Easy for Borel sets. Was significantly more difficult for general sets.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)
≥ dimw(x) + dimw(y|x)

≥ dimw(x) + dimw,x(y)
≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)
≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)

≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)
≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Product Theorem (Marstrand 1954)
For all E ⊆ Rm and F ⊆ Rn,

dimH(E × F) ≥ dimH(E) + dimH(F) .

Proof. By the point-to-set principle, there is an oracle w such that

dimH(E × F) = sup
(x,y)∈E×F

dimw(x, y) ,

and for every ε > 0 there exist x ∈ E and y ∈ F such that

dimw(x) ≥ dimH(E)− ε and dimw,x(y) ≥ dimH(F)− ε .

For this x and y,

dimH(E × F) ≥ dimw(x, y)
≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
≥ dimH(E) + dimH(F)− 2ε .

Let ε→ 0.

Slicing Theorem (Marstrand 1954)
Let E ⊆ R2 be a Borel set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .

Ex

E

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .

Proof. By the point-to-set principle, there is an oracle w such that
dimH(E) = sup

(x,y)∈E
dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)

≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)

= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)

≥ dimw(x) + dimH(Ex)− ε .
Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Slicing Theorem for Arbitrary Sets (N. Lutz ’16)
Let E ⊆ R2 be any set with dimH(E) ≥ 1, and let Ex be the
vertical slice of E at x. Then for almost all x ∈ R,

dimH(Ex) ≤ dimH(E)− 1 .
Proof. By the point-to-set principle, there is an oracle w such that

dimH(E) = sup
(x,y)∈E

dimw(x, y) ,

and for all ε > 0 and x ∈ R, there is a point (x, y) ∈ Ex such that
dimw,x(x, y) ≥ dimH(Ex)− ε .

Since (x, y) ∈ E, we have
dimH(E) ≥ dimw(x, y)

≥ dimw(x) + dimw(y|x)
≥ dimw(x) + dimw,x(y)
= dimw(x) + dimw,x(x, y)
≥ dimw(x) + dimH(Ex)− ε .

Recall that dimw(x) = 1 for almost all x ∈ R, and let ε→ 0.

Conclusion

Algorithmic dimension provides a simple, intuitive, and powerful
approach to problems in classical fractal geometry.

I This approach has also been used to bound the dimension of
generalized Furstenberg sets (related to Kakeya sets).

I Although the simple proofs in this work operated at the
“higher level” of dimension, that proof is significantly more
involved and reasons about Kolmogorov complexity directly.

I Objective: Further strengthen the connections between
geometric measure theory and algorithmic information theory,
i.e., generalize and refine the point-to-set principle.

I Broader project: Systematically re-examine the foundations of
fractal geometry through this pointwise lens.

Conclusion

Algorithmic dimension provides a simple, intuitive, and powerful
approach to problems in classical fractal geometry.

I This approach has also been used to bound the dimension of
generalized Furstenberg sets (related to Kakeya sets).

I Although the simple proofs in this work operated at the
“higher level” of dimension, that proof is significantly more
involved and reasons about Kolmogorov complexity directly.

I Objective: Further strengthen the connections between
geometric measure theory and algorithmic information theory,
i.e., generalize and refine the point-to-set principle.

I Broader project: Systematically re-examine the foundations of
fractal geometry through this pointwise lens.

Conclusion

Algorithmic dimension provides a simple, intuitive, and powerful
approach to problems in classical fractal geometry.

I This approach has also been used to bound the dimension of
generalized Furstenberg sets (related to Kakeya sets).

I Although the simple proofs in this work operated at the
“higher level” of dimension, that proof is significantly more
involved and reasons about Kolmogorov complexity directly.

I Objective: Further strengthen the connections between
geometric measure theory and algorithmic information theory,
i.e., generalize and refine the point-to-set principle.

I Broader project: Systematically re-examine the foundations of
fractal geometry through this pointwise lens.

Conclusion

Algorithmic dimension provides a simple, intuitive, and powerful
approach to problems in classical fractal geometry.

I This approach has also been used to bound the dimension of
generalized Furstenberg sets (related to Kakeya sets).

I Although the simple proofs in this work operated at the
“higher level” of dimension, that proof is significantly more
involved and reasons about Kolmogorov complexity directly.

I Objective: Further strengthen the connections between
geometric measure theory and algorithmic information theory,
i.e., generalize and refine the point-to-set principle.

I Broader project: Systematically re-examine the foundations of
fractal geometry through this pointwise lens.

Conclusion

Algorithmic dimension provides a simple, intuitive, and powerful
approach to problems in classical fractal geometry.

I This approach has also been used to bound the dimension of
generalized Furstenberg sets (related to Kakeya sets).

I Although the simple proofs in this work operated at the
“higher level” of dimension, that proof is significantly more
involved and reasons about Kolmogorov complexity directly.

I Objective: Further strengthen the connections between
geometric measure theory and algorithmic information theory,
i.e., generalize and refine the point-to-set principle.

I Broader project: Systematically re-examine the foundations of
fractal geometry through this pointwise lens.

