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Goal:
Use algorithmic information theory to answer fundamental
questions in fractal geometry.

Agenda:
» Discuss classical and algorithmic notions of dimension.
» Describe a recent point-to-set principle that relates them.
» Describe a notion of conditional dimension.

» Apply these new tools bound the classical dimension of
products and slices of fractals.

» Special case of intersections — one of the sets is a vertical line.
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Informally, it's the number of free parameters: The number of
parameters needed to specify an arbitrary element inside a set
given a description for the set.

2 1 77
We want a way to quantitatively classify sets of measure zero.
Example: Suppose an algorithm succeeds with probability 1 but

fails in the worst case. How much control does an adversary need
to have over the environment to ensure failure?
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Fractal Dimension: Measure Theoretic Approach

How strongly does granularity affect measurement of the set?

Image credit: Alexis Monnerot-Dumaine
Let V. = number of boxes with side £ needed to cover the set.
Consider lim N, - &°.
e—0

Infinite for s = 1 (infinite length) and 0 for s =2 (0 area).

In fact, the limit is positive and finite for at most one value of s.
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The most standard, robust notion of fractal dimension.

H?*(F) = s-dimensional Hausdorff measure of a set £ C R".
(Generalizes integer-dimensional Lebesgue outer measure)

Hausdorff 1919: The Hausdorff dimension of E is

dimy(F) = inf{s: H*(E) = 0}.
H*(E)

H* (E) € [0, 00].
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It is often difficult to prove lower bounds on dim g (E).
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Convenient fact: This set has Hausdorff dimension equal to its
box-counting dimension.

By,

N. = 9(6_ log3)

liII(l) N¢ - €° can only be positive and finite for s = log 3,
E—
so the Sierpinski triangle has Hausdorff dimension log 3 ~ 1.585.

In what sense is this the number of free parameters?
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011100110111

We can think of the first bit and second bit at each recursion level
as two parameters. 2r bits approximate a point within ~ 27" error.

But for points within the fractal set, these parameters are not

independent of each other. The 2r bits are compressible as data to
length ~ rlog 3.

In this sense, we only need log 3 =~ 1.585 parameters to specify a
point within the set.
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Algorithmic Information in Bit Strings

We need a formal notion of compressibility:

The Kolmogorov complexity of a bit string o € {0,1}* is the
length of the shortest binary program that outputs o:

K(o) =min{|n|: U(r) =0},

where U is a universal Turing machine.
> |t matters little which U is chosen for this.
» K(o) = amount of algorithmic information in o.
> K(o) <|o|+o|a]).
» Extends naturally to other finite data objects
> e.g., points in Q"
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Algorithmic Information in Euclidean Spaces

Points in R™ are infinite data objects.
The Kolmogorov complexity of a set £ C Q" is
K(F)=min{K(q) : q € E}.
(Shen and Vereschagin 2002)
The Kolmogorov complexity of a set £ C R" is
K(E)=K(ENQ").

Note that
ECF=K(F)>K(F).
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Let x € R™ and r € N. The Kolmogorov complexity of x at
precision 7 is

K,(z) = K(By-+(2)),

i.e., the number of bits required to specify some rational point
g € Q" such that |¢ — x| <277,

We say z is (algorithmically) random if K,.(z) > nr — O(1).

Fact: Almost all points are random.
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Algorithmic Dimension

At precision 7, x € R™ has information density

K, (x)

r

<n+o(l).

J. Lutz and Mayordomo: The algorithmic dimension of x € R" is

dim(z) = lim inf K. (x) .

T—00 r

Examples:

» If x is computable, then there is a finite program that outputs
x precisely, so K, (z) = O(1) and dim(z) = 0.
» If x € R™ is random, then

nr—O(1) < K.(z) < nr+o(r),

so dim(z) = n.

» The converse does not hold in either case.
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Aren’t points supposed to have dimension 07

For the Sierpinski triangle T', we have

dimy(7T") = sup dim(z) .
zeT

This relationship does not hold in general: Consider the singleton
{y}, where y € R™ is random. Then dimg({y}) = 0, but

sup dim(x) = dim(y) =n.
ze{y}

But we said dimension is the number of free parameters needed to
specify a point given a description of the set.

The universal machine reading our program to estimate z € £
ought to have access to a description of F.
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Relative Dimension

The Kolmogorov complexity of a bitstring o € {0, 1}* relative to
an oracle w € {0,1}*° is

K"(o) =min{|n| : U"(7) =0},

where U is a universal oracle machine: It can query any bit of w as
a computational step.

The dimension of a point x € R" relative to oracle w is

r

K'LU
dim"(z) = lim inf (z) .
r—00 T

» Note that the oracle can encode a point in R”.
» For all z € R”, dim”(x) = 0.
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Point-to-Set Principle (Lutz & Lutz '17)
For every set £ C R",

dimg(E) = min sup dim"(x).
w z€L

A\

classical Hausdorff dimensions of
dimension individual points
.. In order to prove a lower bound
dlmH(E) > «,

it is enough to show that for every oracle w and € > 0, there is
some point z € E with

dim“(z) > a—e¢.
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The conditional Kolomogorov complexity of p € Q™ given g € Q™:
K(plg) = min{|x| : 7 € {0,1}* and U(mw,q) = p}.
The conditional Kolmogorov complexity of £ C Q™ given F' C Q™:

K(E|F) = in K .
(E|F) max min (rlq)

The conditional Kolmogorov complexity of x € R™ at precision y
given y € R™ at precision s:

Ko s(zly) = K(By—r (2)|By-:(y)) -
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Conditional Dimension

Definition (Lutz & Lutz '17)

The conditional dimension of x € R™ given y € R" is

dim(z|y) = lim inf M

T—00 r

» Obeys a chain rule: dim(z,y) > dim(x|y) + dim(y).

» Bounded below by relative dimension: dim(z|y) > dim¥(z).
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Product Theorem (Marstrand 1954)
For all E C R™ and F C R”,

Proof. By the point-to-set principle, there is an oracle w such that

dimyg(E x F)= sup dim“(x,y),
(z,y)EEXF

and for every € > 0 there exist x € E and y € F' such that
dim“(z) > dimyg(F) —e and dim"“*(y) > dimy(F) — €.
For this = and y,
dimpy(E x F) > dim"(x,y)
> dim"(z) + dim"(y|z)
> dim"(z) 4+ dim"*(y)
> dimpy (F) + dimg (F) — 2¢.

Let e — 0. El



Slicing Theorem (Marstrand 1954)

Let E C R? be a Borel set with dimy(E) > 1, and let E, be the
vertical slice of E at . Then for almost all z € R,

dimpy(E;) < dimpg(E) —1.
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Slicing Theorem for Arbitrary Sets (N. Lutz '16)
Let £ C R? be any set with dimy(E) > 1, and let E, be the
vertical slice of E at . Then for almost all z € R,

dimg(E;) < dimg(E) — 1.
Proof. By the point-to-set principle, there is an oracle w such that

dimg(F) = sup dim“(z,y),
(z,y)eE
and for all ¢ > 0 and z € R, there is a point (z,y) € E; such that

dim"“?*(z,y) > dimy(E;) — €.
Since (z,y) € E, we have
dimy(F) > dim"(z,y)

> dim"(z) + dim" (y|z)

> dim"(z) + dim""*(y)
= dim"(z) + dim""*(z, y)

> dim"(z) 4+ dimy (Ey) — €.
Recall that dim"™(xz) = 1 for almost all z € R, and let e — 0. L[]
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Conclusion

Algorithmic dimension provides a simple, intuitive, and powerful
approach to problems in classical fractal geometry.

» This approach has also been used to bound the dimension of
generalized Furstenberg sets (related to Kakeya sets).

» Although the simple proofs in this work operated at the
“higher level” of dimension, that proof is significantly more
involved and reasons about Kolmogorov complexity directly.

» Objective: Further strengthen the connections between
geometric measure theory and algorithmic information theory,
i.e., generalize and refine the point-to-set principle.

» Broader project: Systematically re-examine the foundations of
fractal geometry through this pointwise lens.



