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An Example
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Example: Insertion Sort
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Example: Insertion Sort in Coq
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Definition insert (n:nat) (l:list nat) : list nat.
Proof.
  (* Description of a recursive algorithm*)
Defined.

Definition sort (l:list nat) : list nat.
Proof.
  (* Description of a recursive algorithm*)
Defined.



/ 48

Example: Insertion Sort in Coq
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Definition sort_spec (l:list nat) : 
  {l' | sorted l’ /\ permutation l l’}.
Proof.
  (* Description of a recursive algorithm and 
     proof of the required property *)
Defined.
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Example: Insertion Sort in Coq

7

Definition sort_spec (l:list nat) : 
  {l' | sorted l’ /\ permutation l l’}.
Proof.
  (* Description a recursive algorithm and 
     proof of the required property *)
Defined.

Extraction Language Ocaml.

Extraction "insert_sort.ml" sort_spec.
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A Historic Case: 
 Why Certified Algorithms matter!
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Hales’ proof of the Kepler conjecture

No  arrangement  of  equally  sized 
spheres filling space has a greater 
average  density  than  that  of  the 
cubic close packing and hexagonal 
close packing arrangements. 
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https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Packing_density
https://en.wikipedia.org/wiki/Hexagonal_close_packing
https://en.wikipedia.org/wiki/Hexagonal_close_packing
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Hales’ proof of the Kepler conjecture
• Hales’ proof in August 1998 consisted of 

– 300 pages of texts and 
– 3 Gigabytes of computer programs and data. 
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Hales’ proof of the Kepler conjecture
• Hales’ proof in August 1998 consisted of 

– 300 pages of texts and 
– 3 Gigabytes of computer programs and data. 

• Submitted to Ann. Math.
– after 5 years of refereeing process
– the  panel  of  12 referees  was  99% certain  of  the  correctness  of  the 

proof.
– Ann. Math. published the text proofs (121 pages long) only.
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Geuvers’ comments
• Hales needed to prove that 1039 complicated inequalities hold. 

• He used computer programs to verify the inequalities.

• The referees had problems with his approach:

– verifying the inequalities themselves by hand would be impossible

– one week per inequality is still 25 man years of work. 

• They could not consider to verify the computer programs Hales used.

12
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Computerization of mathematical proofs
• In 2004, Hales himself announced his intention to have formal version of 

his original proof.

• His intention was then realized through a project called Flyspeck on 10th 
August 2014, 10 years after his announcement.

• Two proof assistants, HOL Light and Isabelle, are used.

• Finally published in “Forum of Mathematics, Pi” on May 29, 2017.
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Computerization of mathematical proofs
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Abstract

This article describes a formal proof of the Kepler conjecture on dense sphere packings in a
combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official
published account of the now completed Flyspeck project.

2010 Mathematics Subject Classification: 52C17

1. Introduction

The booklet Six-Cornered Snowflake, which was written by Kepler in 1611,
contains the statement of what is now known as the Kepler conjecture: no
packing of congruent balls in Euclidean three-space has density greater than that
of the face-centered cubic packing [27]. This conjecture is the oldest problem in
discrete geometry. The Kepler conjecture forms part of Hilbert’s 18th problem,
which raises questions about space groups, anisohedral tilings, and packings in
Euclidean space. Hilbert’s questions about space groups and anisohedral tiles
were answered by Bieberbach in 1912 and Reinhardt in 1928. Starting in the
1950s, Fejes Tóth gave a coherent proof strategy for the Kepler conjecture and
eventually suggested that computers might be used to study the problem [6]. The
truth of the Kepler conjecture was established by Ferguson and Hales in 1998,
but their proof was not published in full until 2006 [18].

The delay in publication was caused by the difficulties that the referees
had in verifying a complex computer proof. Lagarias has described the review
process [30]. He writes, ‘The nature of this proof . . . makes it hard for humans
to check every step reliably. . . . [D]etailed checking of many specific assertions
found them to be essentially correct in every case. The result of the reviewing
process produced in these reviewers a strong degree of conviction of the essential
correctness of this proof approach, and that the reduction method led to nonlinear
programming problems of tractable size.’ In the end, the proof was published
without complete certification from the referees.
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Computerization of mathematical proofs

Formal proofs?   Coq, Isabelle?   Proof assistants?
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Practice in Numerical Engineering
(excerpted from a work by Müller and Ziegler, 2014)
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Practice in Numerical Engineering

It generally neglects questions of correctness, 

leading to a mix of criticism and fatalism.
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Practice in Numerical Engineering

”How do you know that your answers are as accurate as you claim?”
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Practice in Numerical Engineering
• Typical answers are

– “I tested the method with some simple examples and it worked”, 

– “I repeated the computation with several values of n and the results 

agreed to three decimal places”,

– “the answers looked like what I expected”,

– …
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Practice in Numerical Engineering
• Typical answers are

– “I tested the method with some simple examples and it worked”, 

– “I repeated the computation with several values of n and the results 

agreed to three decimal places”,

– “the answers looked like what I expected”,

– …
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There are many instances of programs that delivered incorrect results for a 

considerable period of time before the error was found.
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Exact Real Arithmetic (ERA)
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Exact Real Arithmetic (ERA)

Convenient and practically efficient framework 

for rigorous numerical algorithms.

(as propagated by Müller and Ziegler, 2014)

22
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Exact Real Arithmetic (ERA)
• ERA consists of, and combines, four aspects: 

1. Recursive Analysis  — the Theory of  Computing over  real  numbers, 
(smooth) functions, and (closed) Euclidean subsets.

2. Real Complexity Theory as resource-oriented refinement of (1).

3. An  imperative  programming  language  with  rigorous  semantics  of 
computable  operations  on  continuous  objects  appearing  as  entities 
(ERA).

4. A  library  implementing,  and  efficiently  realizing,  (much  of)  the 
semantics according to (3) such as

• C++ library for iRRAM

23
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Exact Real Arithmetic (ERA)
• ERA consists of, and combines, five aspects: 

1. Recursive Analysis  — the Theory of  Computing over  real  numbers, 
(smooth) functions, and (closed) Euclidean subsets.

2. Real Complexity Theory as resource-oriented refinement of (1).

3. An  imperative  programming  language  with  rigorous  semantics  of 
computable  operations  on  continuous  objects  appearing  as  entities 
(ERA).

4. A  library  implementing,  and  efficiently  realizing,  (much  of)  the 
semantics according to (3) such as

• C++ library for iRRAM

5. Formal verification of the tools or library developed based on (3) and 
(4).

24
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How to Approach to Formal Verification

25
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1. Extending Hoare Logic

26
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Extending Hoare Logic
• Hoare logic  is  a formal system with a set  of logical rules for reasoning 

rigorously about the correctness of computer programs.

• A specification of a program C is written by a Hoare triple: 

{P } C {Q}

• P and Q are predicates describing possible states of mutable variables. 

27

https://en.wikipedia.org/wiki/Formal_system
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Extending Hoare Logic
• Hoare  logic  is  originally  introduced  using  a  very  simple  imperative 

language and subsequently refined by many researchers.

• Separation  logic  is  an  extension  than  can  deal  with  pointers  and  local 
reasoning. 

28
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Extending Hoare Logic

29

(Gaussian Elimination with comments by Müller et al. 2016)
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Extending Hoare Logic
• Sewon Park has presented a simple extension of Hoare logic supporting part 

of ERA in iRRAM.

• We hope to extend it and formally verify its soundness.

• The proof assistant Coq is our tool for verification.

30
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Understanding proof assistants
• A proof assistant 

– is a computer software to assist with the development of proofs by 
human-machine interaction

31
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Understanding proof assistants
• A proof assistant 

– is a computer software to assist with the development of proofs by 
human-machine interaction 

– and contains some sort of interactive proof editor with which a human 
can guide the search for proofs.

32
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Type checking in Coq

33

P



/ 48

Some proof assistants 
• Agda

– Unified Theory of Dependent Types (UTT)
• Coq

– Calculus of Inductive Constructions (CIC)
• HOL family (HOL4, HOL Light, ProofPower)

– A classical higher-order logic
• Isabelle

– Zermelo-Fraenkel set theory (ZFC), higher-order logic
• Minlog 

– First order natural deduction calculus
• Mizar

– Tarski–Grothendieck set theory with classical logic
• PVS 

– A classical, typed higher-order logic

34
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2. Using Tools for Source Code Analysis

35
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Using tools for source code analysis
• Combination of 

– Why3

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

36
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Using tools for source code analysis
• Combination of 

– Why3

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

• N. Müller has already achieved some progress.

37
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Using tools for source code analysis
• Combination of 

– Why3

• platform for deductive program verification

• with a language for specification and programming

• relying on external theorem provers

• with a standard library of logical theories such as integer, reals, 

Boolean, sets, maps, …

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …
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Using tools for source code analysis
• Combination of 

– Why3

– Frama-C

• a suite of tools dedicated to the analysis of the source code of 

software written in C

• gathers several static analysis techniques in a single collaborative 

framework

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …
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Using tools for source code analysis
• Combination of 

– Why3

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

• C-Corn: a huge library for constructive mathematics developed 

in Nijmegen

• Mathcomp: implementation of Algebraic Real Numbers by Cyril 

Cohen

• finding a suitable implementation of reals in Coq would be not so 

simple
40
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3. In the Style of CompCert
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CompCert
• CompCert is a formally verified optimizing compiler for a large subset of 

the C99 programming language which currently targets 32-bit PowerPC, 

ARM, x86 and x86-64 architectures. 

42
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CompCert
• CompCert is a formally verified optimizing compiler for a large subset of 

the C99 programming language which currently targets 32-bit PowerPC, 

ARM, x86 and x86-64 architectures. 

• The compiler is specified, programmed and proved in Coq. 

• The performance of its generated code is often close to that of GCC.
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CompCert
• Some experts in CompCert think it would be possible to formalize 

everything about the tools like iRRAM in the style of CompCert. 

44
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CompCert
• Some experts in CompCert think it would be possible to formalize 

everything about the tools like iRRAM in the style of CompCert. 

• We are going to check it, at least partly:

– necessary types

– suitable semantics

– implementation of reals (when necessary)

– soundness check

– …
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CompCert
• Some experts in CompCert think it would be possible to formalize 

everything about the tools like iRRAM in the style of CompCert. 

• We are going to check it, at least partly:

– necessary types

– suitable semantics

– implementation of reals (when necessary)

– soundness check

– …

• Probably, the work on Ariadne and AERN should be studied

– to understand how they are built
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CCA 2017
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Workshop on Real Verification
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