
Towards Certified Algorithms
for Exact Real Arithmetic

CCC 2017
(LORIA, Nancy, June 26-30 2017)

Sunyoung Kim, Gyesik Lee, Sewon Park, Martin Ziegler

/ 48

An Example

2

/ 48

Example: Insertion Sort

3

/ 48

Example: Insertion Sort

4

/ 48

Example: Insertion Sort in Coq

5

Definition insert (n:nat) (l:list nat) : list nat.
Proof.
 (* Description of a recursive algorithm*)
Defined.

Definition sort (l:list nat) : list nat.
Proof.
 (* Description of a recursive algorithm*)
Defined.

/ 48

Example: Insertion Sort in Coq

6

Definition sort_spec (l:list nat) :
 {l' | sorted l’ /\ permutation l l’}.
Proof.
 (* Description of a recursive algorithm and
 proof of the required property *)
Defined.

/ 48

Example: Insertion Sort in Coq

7

Definition sort_spec (l:list nat) :
 {l' | sorted l’ /\ permutation l l’}.
Proof.
 (* Description a recursive algorithm and
 proof of the required property *)
Defined.

Extraction Language Ocaml.

Extraction "insert_sort.ml" sort_spec.

/ 48

A Historic Case:
 Why Certified Algorithms matter!

8

/ 48

Hales’ proof of the Kepler conjecture

No arrangement of equally sized
spheres filling space has a greater
average density than that of the
cubic close packing and hexagonal
close packing arrangements.

9

https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Packing_density
https://en.wikipedia.org/wiki/Hexagonal_close_packing
https://en.wikipedia.org/wiki/Hexagonal_close_packing

/ 48

Hales’ proof of the Kepler conjecture
• Hales’ proof in August 1998 consisted of

– 300 pages of texts and
– 3 Gigabytes of computer programs and data.

10

/ 48

Hales’ proof of the Kepler conjecture
• Hales’ proof in August 1998 consisted of

– 300 pages of texts and
– 3 Gigabytes of computer programs and data.

• Submitted to Ann. Math.
– after 5 years of refereeing process
– the panel of 12 referees was 99% certain of the correctness of the

proof.
– Ann. Math. published the text proofs (121 pages long) only.

11

/ 48

Geuvers’ comments
• Hales needed to prove that 1039 complicated inequalities hold.

• He used computer programs to verify the inequalities.

• The referees had problems with his approach:

– verifying the inequalities themselves by hand would be impossible

– one week per inequality is still 25 man years of work.

• They could not consider to verify the computer programs Hales used.

12

/ 48

Computerization of mathematical proofs
• In 2004, Hales himself announced his intention to have formal version of

his original proof.

• His intention was then realized through a project called Flyspeck on 10th
August 2014, 10 years after his announcement.

• Two proof assistants, HOL Light and Isabelle, are used.

• Finally published in “Forum of Mathematics, Pi” on May 29, 2017.

13

/ 48

Computerization of mathematical proofs

14

Forum of Mathematics, Pi (2017), Vol. 5, e2, 29 pages

doi:10.1017/fmp.2017.1

1

A FORMAL PROOF OF THE KEPLER CONJECTURE

THOMAS HALES1, MARK ADAMS2,3, GERTRUD BAUER4,
TAT DAT DANG5, JOHN HARRISON6, LE TRUONG HOANG7,

CEZARY KALISZYK8, VICTOR MAGRON9, SEAN MCLAUGHLIN10,
TAT THANG NGUYEN7, QUANG TRUONG NGUYEN1,

TOBIAS NIPKOW11, STEVEN OBUA12, JOSEPH PLESO13, JASON RUTE14,
ALEXEY SOLOVYEV15, THI HOAI AN TA7, NAM TRUNG TRAN7,

THI DIEP TRIEU16, JOSEF URBAN17, KY VU18 and
ROLAND ZUMKELLER19

1 University of Pittsburgh, USA;
email: hales@pitt.edu, nguyenquangtruong270983@gmail.com

2 Proof Technologies Ltd, UK
3 Radboud University, Nijmegen, The Netherlands;

email: mark@proof-technologies.com
4 ESG – Elektroniksystem- und Logistik-GmbH, Germany;

email: Gertrud.Bauer@alumni.tum.de
5 CanberraWeb, 5/47-49 Vicars St, Mitchell ACT 2911, Australia;

email: dangtatdatusb@gmail.com
6 Intel Corporation, USA;

email: johnh@ecsmtp.pdx.intel.com
7 Institute of Mathematics, Vietnam Academy of Science and Technology, Vietnam;

email: hltruong@math.ac.vn, ntthang.math@gmail.com, tthan@math.ac.vn,
tntrung@math.ac.vn

8 University of Innsbruck, Austria;
email: cezary.kaliszyk@uibk.ac.at

9 CNRS VERIMAG, France;
email: magron@lix.polytechnique.fr

10 Amazon, USA;
email: seanmcl@gmail.com

11 Technische Universität München, Germany;
email: nipkow@in.tum.de

12 University of Edinburgh, UK;
email: sobua@inf.ed.ac.uk

13 Philips Electronics North America Corporation – Andover, MA, USA;
email: joe.pleso@gmail.com

14 The Pennsylvania State University, USA;
email: jason.rute@gmail.com

c� The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.

,!#5�%5#�$�!6�C$5��1D19�12�5�1%�8%%"$��(((31�2#9�75 !#7�3!#5�%5#�$ �8%%"$����!9 !#7��� �����6�" ���� �
�!(�!1�5��6#!��8%%"$��(((31�2#9�75 !#7�3!#5 �.0�1��#5$$����
 �� ��
 �	���! ����/C ������1%�����
�����$C2:53%�%!�%85�,1�2#9�75

T. Hales et al. 2

15 University of Utah, USA;
email: solovyev.alexey@gmail.com

16 AXA China Region Insurance Company Limited, Hong Kong;
email: trieudiep87@gmail.com

17 Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Republic;
email: urban@cs.ru.nl

18 Chinese University of Hong Kong, Hong Kong;
email: vukhacky@gmail.com

19 email: Roland.Zumkeller@gmail.com

Received 21 November 2014; accepted 9 December 2016

Abstract

This article describes a formal proof of the Kepler conjecture on dense sphere packings in a
combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official
published account of the now completed Flyspeck project.

2010 Mathematics Subject Classification: 52C17

1. Introduction

The booklet Six-Cornered Snowflake, which was written by Kepler in 1611,
contains the statement of what is now known as the Kepler conjecture: no
packing of congruent balls in Euclidean three-space has density greater than that
of the face-centered cubic packing [27]. This conjecture is the oldest problem in
discrete geometry. The Kepler conjecture forms part of Hilbert’s 18th problem,
which raises questions about space groups, anisohedral tilings, and packings in
Euclidean space. Hilbert’s questions about space groups and anisohedral tiles
were answered by Bieberbach in 1912 and Reinhardt in 1928. Starting in the
1950s, Fejes Tóth gave a coherent proof strategy for the Kepler conjecture and
eventually suggested that computers might be used to study the problem [6]. The
truth of the Kepler conjecture was established by Ferguson and Hales in 1998,
but their proof was not published in full until 2006 [18].

The delay in publication was caused by the difficulties that the referees
had in verifying a complex computer proof. Lagarias has described the review
process [30]. He writes, ‘The nature of this proof . . . makes it hard for humans
to check every step reliably. . . . [D]etailed checking of many specific assertions
found them to be essentially correct in every case. The result of the reviewing
process produced in these reviewers a strong degree of conviction of the essential
correctness of this proof approach, and that the reduction method led to nonlinear
programming problems of tractable size.’ In the end, the proof was published
without complete certification from the referees.

,!#5�%5#�$�!6�C$5��1D19�12�5�1%�8%%"$��(((31�2#9�75 !#7�3!#5�%5#�$ �8%%"$����!9 !#7��� �����6�" ���� �
�!(�!1�5��6#!��8%%"$��(((31�2#9�75 !#7�3!#5 �.0�1��#5$$����
 �� ��
 �	���! ����/C ������1%�����
�����$C2:53%�%!�%85�,1�2#9�75

May 2017

/ 48

Computerization of mathematical proofs

Formal proofs? Coq, Isabelle? Proof assistants?

15

/ 48

Practice in Numerical Engineering
(excerpted from a work by Müller and Ziegler, 2014)

16

/ 48

Practice in Numerical Engineering

It generally neglects questions of correctness,

leading to a mix of criticism and fatalism.

17

/ 48

Practice in Numerical Engineering

”How do you know that your answers are as accurate as you claim?”

18

/ 48

Practice in Numerical Engineering
• Typical answers are

– “I tested the method with some simple examples and it worked”,

– “I repeated the computation with several values of n and the results

agreed to three decimal places”,

– “the answers looked like what I expected”,

– …

19

/ 48

Practice in Numerical Engineering
• Typical answers are

– “I tested the method with some simple examples and it worked”,

– “I repeated the computation with several values of n and the results

agreed to three decimal places”,

– “the answers looked like what I expected”,

– …

20

There are many instances of programs that delivered incorrect results for a

considerable period of time before the error was found.

/ 48

Exact Real Arithmetic (ERA)

21

/ 48

Exact Real Arithmetic (ERA)

Convenient and practically efficient framework

for rigorous numerical algorithms.

(as propagated by Müller and Ziegler, 2014)

22

/ 48

Exact Real Arithmetic (ERA)
• ERA consists of, and combines, four aspects:

1. Recursive Analysis — the Theory of Computing over real numbers,
(smooth) functions, and (closed) Euclidean subsets.

2. Real Complexity Theory as resource-oriented refinement of (1).

3. An imperative programming language with rigorous semantics of
computable operations on continuous objects appearing as entities
(ERA).

4. A library implementing, and efficiently realizing, (much of) the
semantics according to (3) such as

• C++ library for iRRAM

23

/ 48

Exact Real Arithmetic (ERA)
• ERA consists of, and combines, five aspects:

1. Recursive Analysis — the Theory of Computing over real numbers,
(smooth) functions, and (closed) Euclidean subsets.

2. Real Complexity Theory as resource-oriented refinement of (1).

3. An imperative programming language with rigorous semantics of
computable operations on continuous objects appearing as entities
(ERA).

4. A library implementing, and efficiently realizing, (much of) the
semantics according to (3) such as

• C++ library for iRRAM

5. Formal verification of the tools or library developed based on (3) and
(4).

24

/ 48

How to Approach to Formal Verification

25

/ 48

1. Extending Hoare Logic

26

/ 48

Extending Hoare Logic
• Hoare logic is a formal system with a set of logical rules for reasoning

rigorously about the correctness of computer programs.

• A specification of a program C is written by a Hoare triple:

{P } C {Q}

• P and Q are predicates describing possible states of mutable variables.

27

https://en.wikipedia.org/wiki/Formal_system

/ 48

Extending Hoare Logic
• Hoare logic is originally introduced using a very simple imperative

language and subsequently refined by many researchers.

• Separation logic is an extension than can deal with pointers and local
reasoning.

28

/ 48

Extending Hoare Logic

29

(Gaussian Elimination with comments by Müller et al. 2016)

/ 48

Extending Hoare Logic
• Sewon Park has presented a simple extension of Hoare logic supporting part

of ERA in iRRAM.

• We hope to extend it and formally verify its soundness.

• The proof assistant Coq is our tool for verification.

30

/ 48

Understanding proof assistants
• A proof assistant

– is a computer software to assist with the development of proofs by
human-machine interaction

31

/ 48

Understanding proof assistants
• A proof assistant

– is a computer software to assist with the development of proofs by
human-machine interaction

– and contains some sort of interactive proof editor with which a human
can guide the search for proofs.

32

/ 47

Type checking in Coq

33

P

/ 48

Some proof assistants
• Agda

– Unified Theory of Dependent Types (UTT)
• Coq

– Calculus of Inductive Constructions (CIC)
• HOL family (HOL4, HOL Light, ProofPower)

– A classical higher-order logic
• Isabelle

– Zermelo-Fraenkel set theory (ZFC), higher-order logic
• Minlog

– First order natural deduction calculus
• Mizar

– Tarski–Grothendieck set theory with classical logic
• PVS

– A classical, typed higher-order logic

34

/ 48

2. Using Tools for Source Code Analysis

35

/ 48

Using tools for source code analysis
• Combination of

– Why3

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

36

/ 48

Using tools for source code analysis
• Combination of

– Why3

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

• N. Müller has already achieved some progress.

37

/ 48

Using tools for source code analysis
• Combination of

– Why3

• platform for deductive program verification

• with a language for specification and programming

• relying on external theorem provers

• with a standard library of logical theories such as integer, reals,

Boolean, sets, maps, …

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

38

/ 48

Using tools for source code analysis
• Combination of

– Why3

– Frama-C

• a suite of tools dedicated to the analysis of the source code of

software written in C

• gathers several static analysis techniques in a single collaborative

framework

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

39

/ 48

Using tools for source code analysis
• Combination of

– Why3

– Frama-C

– Coq

– Libraries for Reals such as C-CORN, Mathcomp, …

• C-Corn: a huge library for constructive mathematics developed

in Nijmegen

• Mathcomp: implementation of Algebraic Real Numbers by Cyril

Cohen

• finding a suitable implementation of reals in Coq would be not so

simple
40

/ 48

3. In the Style of CompCert

41

/ 48

CompCert
• CompCert is a formally verified optimizing compiler for a large subset of

the C99 programming language which currently targets 32-bit PowerPC,

ARM, x86 and x86-64 architectures.

42

/ 48

CompCert
• CompCert is a formally verified optimizing compiler for a large subset of

the C99 programming language which currently targets 32-bit PowerPC,

ARM, x86 and x86-64 architectures.

• The compiler is specified, programmed and proved in Coq.

• The performance of its generated code is often close to that of GCC.

43

/ 48

CompCert
• Some experts in CompCert think it would be possible to formalize

everything about the tools like iRRAM in the style of CompCert.

44

/ 48

CompCert
• Some experts in CompCert think it would be possible to formalize

everything about the tools like iRRAM in the style of CompCert.

• We are going to check it, at least partly:

– necessary types

– suitable semantics

– implementation of reals (when necessary)

– soundness check

– …

45

/ 48

CompCert
• Some experts in CompCert think it would be possible to formalize

everything about the tools like iRRAM in the style of CompCert.

• We are going to check it, at least partly:

– necessary types

– suitable semantics

– implementation of reals (when necessary)

– soundness check

– …

• Probably, the work on Ariadne and AERN should be studied

– to understand how they are built

46

/ 48

CCA 2017

47

/ 48

Workshop on Real Verification

48

