The Computational Content of the

Constructive Kruskal T

Dominique Larchey-Wendling
TYPES team

ree

LORIA — CNRS

Nancy, France

m

T'heorem

http://www.loria.fr/~larchey/Kruskal

Continuity, Computability, Constructivity -
From Logic to Algorithms, CCC 2017

/

~

Well Quasi Orders (WQO) 1/2'

e Important concept in Computer Science:

— strenghtens well-foundedness, more stable

— termination of rewriting (Dershowitz, RPO)

~

— size-change termination, terminator (Vytiniostis, Coquand ...)

e Important concept in Mathematics:

N

— Dickson’s lemma. Hieman’s lemma
9

— Higman’s theorem, Kruskal’s tree theorem

— Robertson-Seymour theorem (graph minor theorem)

— Unprovability result: Kruskal theorem not in PA (Friedman)

/

~

~

Well Quasi Orders (WQO) 2/2'

e for < a quasi order over X: reflexive & transitive binary relation

e several classically equivalent definitions (see e.g. JGL 2013)

— almost full: each (z;);en has a good pair (x; < x; with ¢ < j)
— < well-founded and no oo antichain

— finite basis: U = 17U implies U = 1F' for some finite F'

— {JU | U C X} well-founded by C

e many of these equivalences do not hold intuitionistically

N

/

~

WQOs are stable under type constructs'

Given a WQO < on X, we can lift < to WQOs on:

Higman lemma: list(X) with subword(<)

Higman thm: btree(k, X) with emb_product(<) (any k € N)
Kruskal theorem: tree(X) with emb_homeo(<)

These theorem are closure properties of the class of WQOs

Other noticable results:

Dickson’s lemma: (N*, <) is a WQO

Finite sequence thm: 1ist(N) WQO under subword(<)
Ramsey theorem: <; and <, WQOs imply <; x <5 WQO

~

~

N

What Intuitionistic Kruskal Tree Theorem?'

e The meaning of those closure theorems intuitionistically:
— depends of what is a WQO (which definition?)

— but not on e.g. emb_homeo which has an inductive definition

e What is a suitable intuitionistic definition of WQO 7
— quasi-order does not play an important/difficult role
— should be classically equivalent to the usual definition
— should intuitionistically imply almost full

— intuitionistic WQOs must be stable under liftings

e Allow the proof and use of Ramsey, Higman, Kruskal... results

~

/ Intuitionistic formulations of WQOs 1/ 2' \

e Almost full relations (Veldman&Bezem 93)
— each (x;);eny has z; R x; with ¢ < j
— works for Higman and Kruskal theorems (Veldman 04)

— uses stumps over N which require Brouwer’s thesis

e Bar induction (Coquand&Fridlender 93)
— bar extends (good R) ||

— works for the general Higman lemma (Fridlender 97)

e Well-foundedness (Seisenberger 2003)
— extends(™Y is well-founded on Bad(R)

— works for Higman lemma and Kruskal theorem

\ — requires decidability of R /

N

/ Intuitionistic formulations of WQOs 2/ 2' \

Almost full relations (Vytiniostis&Coquand& Wahlstedt 12)
— af(R) inductively defined
— works for Ramsey theorem

— intuitionistically equivalent to bar extends (good R) []

Seisenberger’s definition not equiv. to Coquand&Fridlender for
undecidable R

Veldman&Bezem definition works for R over N (not over
arbitrary types) but requires Brouwer’s thesis

Let us introduce

— bar inductive predicates

— Coquand et al. inductive definition of almost full

/

7

Bar inductive predicate, accessibility predicate'

e Given 7 : X - X — Prop, z: X and Q : X — Prop

o () bars x if every oo T-path from x meets @)
e 1 is accessible if every oo T-path from z meets _ — False

e Inductive definitions (Prop or Type) are stronger (intui.)

Q x Yy, T xy—bar T Qy Yy, T x y—acc T y
bar 7 Q) x bar T Q x

acc T x

e Axioms (like Brouwer’s bar thesis) for equivalence

e Obviously: acc T z iff bar 7 (_+> False) x

N /

~

N

Bar inductive predicate and the FAN theorem'

e inductive FAN theorem:

bar 7 Q * — bar T° VQ |x]

— for bar 7 : (X — Prop) — (X — Prop)

— and monotonic Q: Vxy,T xy—Q x — Q vy

— T°Imiff Vy,y e m — dx,x € IANT z y (direct image)
— (VQ) 1 iff Vx,z € | — Q x (finite quantification)

e for bar; 7 : (X — Prop) — (X — Type)

— FAN is not provable in this informative case

— the relation 7° hides the relation between y and x

— possible solution: restrict 7°

~

~

Bar inductive predicate and list extensions'

e We use bar 7) with 7 = extends (and) = good R)

— extends I m ifT m = _:: 1

—good RU Mt =144+ |b|::m++|a|::r for some a R b

— good has an easy inductive definition, beware of snoc lists

— bar! = bar extends : (1ist X — Prop) — (1ist X — Prop)

Q1 Va,bar! Q (x::1)
bar!) I bar!) 1

e bar! (good R) [] iff |iterated exts of [] meets a good list

e every infinite sequence contains a good pair (almost full)

N

/

10

e barl = bar; extends : (1ist X — Prop) — (1ist X — Type)

Q1 Vz,bar! Q (x::1)
barl QI barl Q I

e the list of choice sequences:

e an informative instance of the FAN theorem () monotonic):

bar! @ [] — barl (VQ o list_expo)]

uniformly | among choices sequences

e () is met
N

/ The Informative FAN theorem (Fridlender) I \

[X1;...52,] € list_expo [l1;...51l,] <= 1 €L N Nz €1,

/

11

~

~

Inductive bars of decidable predicates'

bar; is obviously stronger than bar

but bar 7 @ [not enough to build bar; T Q I

however, it is sufficient when | () is decidable

V,{Q I} +{-Q l}) = Vil,bar T Q l —>bar; T QI

if () has a decision term then missing info. can be reconstructed
also, bar;) x is equivalent to acc (uv—T uvA-Q u) x

bar! (good R) and bar! (good R) equivalent when R decidable

/

12

~

e Well-founded trees wft(X), Ifp of

*:unit
inl % : wit(X)

Well-founded trees over a type X I

~

wEt(X) = {x} + X — wit(X)

g: X —wft(X)

inrg:wit(X)

o wit(X) collects bounds for any sequence f : N — X

\o Veldman’s stumps are sets of branches of trees in wft(N)

e Given a branch f: N — X, compute its height: 1

- fl+)=z~ f(1+2) -

- ht(inlx,) =0 i

- mt(inrg, f) = 1+ht(g(fo), f(1+)) O -

/

13

/ A well-founded tree for (N, <)

e Property: Vf:N =N, i <73 <2+ fo, fi < f;

e In wft(N), we define T,, the tree of uniform height n:

— Ty = inl(x) and 114, = inr(_— T},)
— for any f: N— N, ht(7T,, f) =n

e And T< = inr(n — T14n)

Tl—l—n

AN A

X

Tl—l—z

\0 Hence ht(Tg,f) =1 +ht(T1—|-f07f<1 +:)) =2+ fo

~

/

14

~

~

N

Computational content of inductive bar predicates'

e recall wft(X) : Type inductivelly defined by

* unit g: X —wit(X)
inl % : wit(X) inrg: wit(X)

e bar _securedby @ : wft(X) — list X — Prop
— bar_securedby @ (inlx) [= Q[

— bar_securedby () (inr g) [= Vz,bar_securedby Q (gx) (x::1)

e bar! Q| = {t:wft(X) |bar_securedby Q t 1}

e t:wft(X) is the computational content of the bar! predicate

/

15

/ Coquand’s Almost full relations, step by step I \

1. Veldman et al.: Vf :N—= X, Jt <j, f; R f;

Logically eq. variant: Vf :N— X, dn, Ji<j<n, f; R f;
Partially informative: Vf : N — X, {n ’ Ji<j<n, fi R fj}
Variant: {h: (N— X) =N |Vf, Ji<j<h(f), fi R f;}
Variant: {¢:wft(X) ‘ Vf, 3i <j<ht(t, f), fi R f;}

S o s w1

Coquand et al.: is defined as an inductive predicate af;(R)
e the prefix of length ht(¢, f) of f: N — X contains a good pair

e the computational content is (for every sequence f : N — X):

— a | bound | on the size of the search space for good pairs

\ — and it is not a good pair /

16

Almost full relations, inductively'

e For X : Type and R: X - X — Prop

e Lifted relation: x (RTu)y=xz RyVu Rx

— in R T u, elements above u are forbidden in bad sequences

e full : rely X — |Prop|and af; : rely X — | Type

V:B,y, r R Y full R \V/’LL, aft(RTu)
full R aft R aft R

e af securedby : wft(X) — rely X — Prop:
— af_securedby(inl*, R) = full R

— af_securedby(inr g, R) = Vu, af _securedby(g u, R T u)

N /

17

T

e these are intuitionistically “equivalent” (hold in Type, not Prop):
— af; R
— {t: wft(X) | af_securedby(t, R)}
— {t:wfe(X) | VS, Ji <j<nt(t, f), fi R f;}
— bar! (good R) |]
— {t wit(X) ‘ bar_securedby (good R) t []}
_ {t :wft(X) ‘ Vf,good R [frn_1;.--; fo]} where n = ht(t, f)

e the tree ¢ : wft(X) might be modified

Imost full relations, equivalent characterizations\

e to establish af; R iff bar! (good R) [], we prove

af,(R1an,1...7a;) iff bar! (good R) [ai,...,a,]

N /

18

~

N

~

Almost full relations, some properties'

af t_refl: if af; R then =x C R (iff in case X is finite)
af _t_inc: if R C S and af; R then af; S

af t_surjective (easy but very useful):

—for f: X =Y —Prop, R:rels X and S :rels Y

— if f surjective: Vy,{x | f = y}

— if f morphism: f z1 y1 and f x5 yo and x1 R x9 imply y1 S 9o
— then af; R implies af; S

Ramsey (Coquand): af; R and af; S imply af;(RNS)
— he deduces af;(R x S) and af;(R+ S)

/

19

/The Intuitionistic Ramsey Theorem (Coquand) I\

e By induction on the arity: af; R and af; S imply af;(RNS)
e Curry-isomorphically: af; R and af; .S imply af;(R x 5)
e Dickson’s lemma: af; (<y X -+ X <y)

e Classical Ramsey (not provable intuitionistically):

for X : Type infinite and R : X — X — Prop define

Rynm < n=mV-Rnm

Rinm < n=mVEnm

—af Ry implies 4f : N — X injective and R f; f; for any ¢ < j
—af R implies 4f : N— X inj. and —~R f; f; for any i < j

af Ry and af R; implies af (Ry N Ry) hence af(=x) (absurd)/

20

e Given R :rels X over a type X

e The subword relation <% : rels (1ist X) defined by 3 rules

[< m aRbO [<pm

] <% (] [<Ebm a:xl<Bb:m

e also write subword R for <%

e Higman lemma (Fridlender 97, non informative version):

bar’ (good R) [] implies bar' (good (subword R)) []

e Nearly the same proof works for bar! instead of bar’

\0 But this proof cannot be generalized to finite trees...

/ Higman lemma and the subword relation' \

/

21

=

/The product tree embedding, Higman theorem I\

Do not confuse with Higman lemma

trees with same type for all arities: tree X = X x list(tree X)

trees of breadth bounded by k£ € N:

btree k X = {¢ | tree_fall ((_|ll) — lengthll < k) t}

any t € T ist = (x|ty,...,tn) Withn<k,x € X and t; € T

for a relation R : rels X, we define (needs some work...)

s <pt t Ry $1<pti,....sn <ptn

S <J>§i <$n|t1,...,tn> <£E|81,...,Sn> <§ <y‘t1,.. .,tn>

Higman theorem: af; R implies af;(<}) on btree k X

/

22

Higman theorem, an inductive proof I

Type theoretic version of (Veldman 2004)
k—1
tree(X,)n<r =T where T is Ifp of T = Z X, xT"
n=0

one type X,, for each arity n < k
any t € T is t = (x,|t1,...,tn) with x, € X,, and t; € T

for arity-indexed relations R : Vn < k,rels (X,), we define

s<f§ti Tn Ry yn 81<%t1,...,8n<%tn

S <f]'§a <xn’t1, e ,tn> <£Un‘81, .. .,Sn> <% <yn‘t1, e ,tn>

Higman thm.: (Vn < k, af; R,) implies aft(<]}z)

by lexicographic induction on af; Ry X --- X af; R,

~

/

23

The homeomorphic embedding, Kruskal’s theorem'

e one type X for all arities: tree X = X X list(tree X)

e for R :rely X, we define <% by nested induction

s <pt;
s <% (xplt1, ..., tn)
r; Rx; [s1,...,si] (subword <%) [t1,...,1;]
(5|81, ..., 8:1) <k (xjlt1,...,t;)

e hand-written elimination scheme (nested induction)

e Kruskal theorem: af; R implies af;(<})

N /

24

/ Kruskal Thm, Tree Embedding upto k' \

o tree(X,)neny =T where T is Ifp of T' = Z X, xT"

n=0

e k€ N and an arity-indexed relation R : Vn € N, rels (X,,)

e one X, for each arity, but | X, = X,, |as soon asn > k

s <p.rli
s <pr (Talt, .. tn)
n<k x,R,uyn 81<}§,Rt1,...,sn<}jﬂtn
(Tnls1,- -5 8n) <k g (YUnlt1, - tn)
k<i z Rpx; [S1,---,5] (subword<}§,R) 1, ..., 1]

\ <CIZ¢’81,...,S¢> <%,R <$j|t1,...,tj> /

25

/ Kruskal’s Tree Theorem, inductive proof I \

e The recursive statement looks like:

if af; Ry and ... and af; Ry then af;(<j)

e The proof sketch (typed version of Veldman 2004)
— by induction on lexicographic product af; Ry X --- X af; Rg
— it is difficult to implement this lexicographic product
— 1t 1s even more difficult with af instead of af;

— Veldman needs Brouver’s thesis, but we avoid it

e Kruskal’s Tree Theorem: af; R implies aft(<’§)

u 3 3 *
— use <; g as a lower approximation for <%

\ — <gpr € <k in the case where n — R, is constant

/

26

/ Conclusion '

e Computational content of af; or bar! (good R) []
— a collection of bounds on search-space for good pairs

— stored in a well-founded tree

e Computational content of theorems:
— Ramsey thm, Higman’s lemma and thm, Kruskal’s thm

— are bound transformation algorithms

e The Coq code: http://www.loria.fr/~larchey/Kruskal
— Free software, available, around 30000 lines of code
— Higman’s lemma alone below 1000 lines

— Kruskal’s proof complete (both af and af;)

\ — but the code can and is still being improved

/

27

