# Duality of upper and lower powerlocales on locally compact locales

Tatsuji Kawai University of Padova



# Why powerlocales?

- Compact and overt
- Duality
- ▶ Basic Picture
- ► Semantics: modal logic, non-determinism

#### Theorem (Hyland 1983)

A locale X is locally compact if and only if the exponential  $\mathbb{S}^X$  over Sierpinski locale  $\mathbb{S}$  exists.

#### Theorem (Hyland 1983)

A locale X is locally compact if and only if the exponential  $\mathbb{S}^X$  over Sierpinski locale  $\mathbb{S}$  exists.

**LKLoc**: the category of locally compact locales.

#### **Corollary**

There is an adjunction  $\underbrace{ \text{LKLoc}}_{\mathbb{S}^{(-)}} \underbrace{ \text{LKLoc}}^{op},$ 

induced by the natural isomorphism

$$\mathbf{LKLoc}(X, \mathbb{S}^Y) \cong \mathbf{LKLoc}(X \times Y, \mathbb{S})$$
  

$$\cong \mathbf{LKLoc}(Y \times X, \mathbb{S})$$
  

$$\cong \mathbf{LKLoc}(Y, \mathbb{S}^X).$$

#### Question

What is a monad on LKLoc induced by the adjunction?



# Theorem (Vickers 2004)

$$\mathbb{S}^{\mathbb{S}^X} \cong P_U P_L X \cong P_L P_U X$$

 $P_L\colon \text{the lower powerlocale}$  monad.

 $P_{U} \\{:}$  the  $\mbox{\bf upper powerlocale}$  monad.

#### Question

What is a monad on LKLoc induced by the adjunction?



#### Theorem (Vickers 2004)

$$\mathbb{S}^{\mathbb{S}^X} \cong P_U P_L X \cong P_L P_U X$$

 $P_L$ : the **lower powerlocale** monad.  $P_{IJ}$ : the **upper powerlocale** monad.

# Proposition (de Brecht & K 2016)

 $P_{\mathbf{U}}\mathbb{S}^X \cong \mathbb{S}^{P_{\mathbf{L}}X} \ \& \ P_{\mathbf{L}}\mathbb{S}^X \cong \mathbb{S}^{P_{\mathbf{U}}X}.$ 

#### Question

What is a monad on LKLoc induced by the adjunction?



# Theorem (Vickers 2004)

$$\mathbb{S}^{\mathbb{S}^X} \cong P_U P_L X \cong P_L P_U X$$

 $P_L$ : the **lower powerlocale** monad.  $P_H$ : the **upper powerlocale** monad.

# Proposition (de Brecht & K 2016)

 $P_U\mathbb{S}^X\cong\mathbb{S}^{P_LX}\ \&\ P_L\mathbb{S}^X\cong\mathbb{S}^{P_UX}.\ \textit{So what?}$ 

#### Locales

#### **Definition**

A **frame** is a poset with arbitrary joins and finite meets that distributes over joins. A **frame homomorphism** is a function that preserves finite meets and all joins. The category **Loc** of **locales** is the opposite of the category of frames.

#### **Notations**

X, Y: locales.

 $\Omega X$ : the frame corresponding to a locale X.

 $\Omega Y \xrightarrow{\Omega f} \Omega X$  : the frame homomorphism corresponding to a locale map  $f\colon X \to Y$ .

# **Lower and Upper Powerlocales**



#### **Definition**

A **suplattice** is a poset with arbitrary joins. A **suplattice homomorphism** is a function that preserves all joins. Write **SupLat** for the category of suplattices.

The forgetful functor  $U \colon \mathbf{Frm} \to \mathbf{SupLat}$  has a left adjoint  $F \colon \mathbf{SupLat} \to \mathbf{Frm} \colon$ 

- ▶ for each suplattice D, there exists a frame F(D) and a suplattice homomorphism  $\iota_D^L \colon D \to F(D)$ ,
- for any frame Y and a suplattice homomorphism  $f\colon D\to Y$ , there exists a unique frame homomorphism  $\bar f\colon F(D)\to Y$  such that

$$F(D) - \stackrel{\overline{f}}{-} > Y.$$

$$\iota_D^L \uparrow \qquad \qquad f$$

$$D$$

# Lower powerlocales

#### **Definition**

Let X be a locale. The **lower powerlocale**  $P_LX$  is the locale corresponding to the frame  $F(U(\Omega X))$ .

The lower powerlocales form a monad  $\langle P_L, \eta^L, \mu^L \rangle$ , where  $\eta_X^L$  and  $\mu_X^L$  are given by

#### **Definition**

A **preframe** is a poset with directed joins and finite meets which distributes over directed joins. A **preframe homomorphism** is a function that preserves finite meets and directed joins. Write **PrFrm** for the category of preframes.

The forgetful functor  $U \colon \mathbf{Frm} \to \mathbf{PrFrm}$  has a left adjoint  $H \colon \mathbf{PrFrm} \to \mathbf{Frm}$ :

- for each preframe D, there exists a frame H(D) and a preframe homomorphism  $\iota_D^U\colon D\to H(D)$ ,
- ▶ for any frame Y and a preframe homomorphism  $h \colon D \to Y$ , there exists a unique frame homomorphism  $\overline{h} \colon H(D) \to Y$  such that

$$H(D) - \frac{\overline{h}}{h} > Y.$$

$$\iota_D^{U} \downarrow \qquad \qquad h$$

# **Upper powerlocales**

#### **Definition**

Let X be a locale. The **upper powerlocale**  $P_UX$  is the locale corresponding to the frame  $H(U(\Omega X))$ .

The upper powerlocales form a monad  $\langle {\bf P_U}, \eta^U, \mu^U \rangle$  , where  $\eta^U_X$  and  $\mu^U_X$  are given by

$$\begin{array}{cccc} \Omega P_{\mathbf{U}} X & \xrightarrow{\Omega \eta_X^U} & \Omega X & & \Omega P_{\mathbf{U}} X & \xrightarrow{\Omega \mu_X^U} & \Omega P_{\mathbf{U}} P_{\mathbf{U}} X \\ & \iota_X^U & & & \iota_X^U & & & \uparrow \iota_{P_{\mathbf{U}} X}^U \\ & \Omega X & & \Omega X & \xrightarrow{\iota_X^U} & \Omega P_{\mathbf{U}} X. \end{array}$$

# Order Enrichment and Distributivity

#### **Order enrichments**

#### **Definition**

The category of **Poset** of posets is a poset enriched category (i.e. homesets are posets), where morphisms are ordered pointwise. **Loc** is poset-enriched by **specialization order** given by

$$\begin{split} f \leq g & \stackrel{\mathsf{def}}{\Longleftrightarrow} & \Omega f \leq_{\mathbf{Poset}} \Omega g \\ & \stackrel{\mathsf{def}}{\Longleftrightarrow} & (\forall y \in \mathit{Y}) \, \Omega f(y) \leq \Omega g(y). \end{split}$$

#### **Definition**

In a poset enriched category  $\mathbb{C}$ , a morphism  $f\colon X\to Y$  is **the left adjoint** to  $g\colon Y\to X$ , written  $f\dashv g$ , if  $\mathrm{id}_X\leq g\circ f$  &  $f\circ g\leq \mathrm{id}_Y$ .

#### **Order enrichments**

#### Lemma

For any locale *X*, we have (in **Poset**)

- $\iota_X^L \dashv \Omega \eta_X^L$  ( $\iff \iota_X^L \circ \Omega \eta_X^L \leq \mathrm{id}_{\Omega P_L X}$ );
- $\blacktriangleright \ \Omega\eta_X^U \dashv \iota_X^U \ \ (\Longleftrightarrow \ \operatorname{id}_{\Omega P_U X} \leq \iota_X^U \circ \Omega\eta_X^U).$



#### **KZ-monads**

#### **Definition**

Let  $\langle T, \eta, \mu \rangle$  be a monad on a poset enriched category  $\mathbb{C}$ , where T preserves the order on morphisms. Then, T is a KZ-monad (coKZ-monad) if  $T\eta_X \leq \eta_{TX}$  ( $\eta_{TX} \leq T\eta_X$ ).

# **Proposition**

 $\langle P_L, \eta^L, \mu^L \rangle$  is a KZ-monad and  $\langle P_L, \eta^U, \mu^U \rangle$  is a coKZ-monad.

#### **KZ-monads**

#### **Definition**

Let  $\langle T, \eta, \mu \rangle$  be a monad on a poset enriched category  $\mathbb{C}$ , where T preserves the order on morphisms. Then, T is a KZ-monad (coKZ-monad) if  $T\eta_X \leq \eta_{TX}$  ( $\eta_{TX} \leq T\eta_X$ ).

# **Proposition**

 $\langle P_L, \eta^L, \mu^L \rangle$  is a KZ-monad and  $\langle P_L, \eta^U, \mu^U \rangle$  is a coKZ-monad.

# **Proposition**

Let  $\langle T, \eta, \mu \rangle$  be a KZ-monad on a poset enriched category  $\mathbb{C}$ . Then, the following are equivalent.

- **1.**  $\alpha: TX \rightarrow X$  is a T-algebra:
  - **2.**  $\alpha \dashv \eta_X \& \alpha \circ \eta_X = \mathrm{id}_X$ ;
  - **3.**  $\alpha \circ \eta_X = \mathrm{id}_X$ .

In particular, T-algebra structure on X (if it exists) is unique.

# **Distributivity**

Let  $\langle T, \eta^T, \mu^T \rangle$  and  $\langle S, \eta^S, \mu^S \rangle$  be monads. A **distributive law** of T over S is a natural transformation  $\sigma \colon S \circ T \to T \circ S$  which makes the diagrams commutes.



Then,  $T \circ S$  is a monad with

$$\begin{split} \eta &= \operatorname{id} \xrightarrow{\eta^S} S \xrightarrow{\eta^T S} T \circ S, \\ \mu &= T \circ S \circ T \circ S \xrightarrow{T\sigma S} T \circ T \circ S \circ S \xrightarrow{\mu^T S \circ S} T \circ S \circ S \xrightarrow{T\mu^S} T \circ S. \end{split}$$

# Distributivity

Let  $\langle T, \eta^T, \mu^T \rangle$  and  $\langle S, \eta^S, \mu^S \rangle$  be monads. A **distributive law** of T over S is a natural transformation  $\sigma: S \circ T \to T \circ S$  which makes the diagrams commutes.



Then,  $T \circ S$  is a monad with

$$\begin{split} \eta &= \operatorname{id} \xrightarrow{\eta^S} S \xrightarrow{\eta^T S} T \circ S, \\ \mu &= T \circ S \circ T \circ S \xrightarrow{T \sigma S} T \circ T \circ S \circ S \xrightarrow{\mu^T S \circ S} T \circ S \circ S \xrightarrow{T \mu^S} T \circ S. \end{split}$$

# **Proposition (Vickers 2004)**

There is a natural isomorphism  $P_{L} \circ P_{U} \cong P_{U} \circ P_{L}$  which (together with its inverse) is a distributive law of P<sub>L</sub> over P<sub>U</sub> and vice versa.

# **Double powerlocales**

#### **Definition**

A double powerlocale  $\mathbb P$  on  $\mathbf{Loc}$  is the composite  $P_U \circ P_L$  (equivalently the composite  $P_L \circ P_U$ ).

# **Double powerlocales**

#### **Definition**

A double powerlocale  $\mathbb{P}$  on  $\mathbf{Loc}$  is the composite  $P_U \circ P_L$  (equivalently the composite  $P_L \circ P_U$ ).

#### Lemma (Vickers 2004)

Every  $\mathbb{P}$ -algebra is also  $P_L$ -algebra and  $P_U$ -algebra. Moreover,  $\mathbb{P}$ -algebra structure on a object X (if it exists) is unique.

# **Double powerlocales**

#### **Definition**

A double powerlocale  $\mathbb P$  on  $\mathbf{Loc}$  is the composite  $P_U \circ P_L$  (equivalently the composite  $P_L \circ P_U$ ).

# Lemma (Vickers 2004)

Every  $\mathbb{P}$ -algebra is also  $P_L$ -algebra and  $P_U$ -algebra. Moreover,  $\mathbb{P}$ -algebra structure on a object X (if it exists) is unique.

**Proof.** If  $\mathbb{P}X \xrightarrow{\alpha} X$  is an  $\mathbb{P}$ -algebra, its  $P_L$ -algebra structure is

$$P_{L}X \xrightarrow{P_{L}\eta_{X}^{U}} P_{U}P_{L}X \cong \mathbb{P}X \xrightarrow{\alpha} X,$$

which is a retract of  $\eta_X^L \colon X \to P_L X$  (note:  $P_L$  is a KZ-monad).

The forgetful functor  $\mathbb{P}$ -Alg  $\to P_L$ -Alg has a left adjoint:

The forgetful functor  $\mathbb{P}$ -Alg  $\to P_L$ -Alg has a left adjoint:

▶ If  $P_L X \xrightarrow{\alpha} X$  is a  $P_L$ -algebra,

$$\mathbb{P} P_{U} X \cong P_{L} P_{U}^{2} X \xrightarrow{P_{L} \mu_{X}^{U}} P_{L} P_{U} X \cong \mathbf{P}_{U} \mathbf{P}_{L} X \xrightarrow{\mathbf{P}_{U} \boldsymbol{\alpha}} \mathbf{P}_{U} X$$

is a  $\mathbb{P}$ -algebra and  $\eta_X^U \colon X \to \mathrm{P}_{\mathrm{U}} X$  is a  $\mathrm{P}_{\mathrm{L}}$ -algebra morphism;

The forgetful functor  $\mathbb{P}$ -Alg  $\to P_L$ -Alg has a left adjoint:

▶ If  $P_L X \xrightarrow{\alpha} X$  is a  $P_L$ -algebra,

$$\mathbb{P} P_{U} X \cong P_{L} P_{U}^{2} X \xrightarrow{P_{L} \mu_{X}^{U}} P_{L} P_{U} X \cong \mathbf{P}_{U} \mathbf{P}_{L} X \xrightarrow{\mathbf{P}_{U} \boldsymbol{\alpha}} \mathbf{P}_{U} X$$

is a  $\mathbb{P}$ -algebra and  $\eta_X^U \colon X \to \mathrm{P}_\mathrm{U} X$  is a  $\mathrm{P}_\mathrm{L}$ -algebra morphism;

▶ for any  $\mathbb{P}$ -algebra  $\mathbb{P}Y \xrightarrow{\beta} Y$  and  $P_L$ -algebra morphism  $f: X \to Y$ , there is a unique  $\mathbb{P}$ -algebra morphism  $\overline{f}: P_U X \to Y$  such that



The forgetful functor  $\mathbb{P}$ -Alg  $\to P_L$ -Alg has a left adjoint:

▶ If  $P_L X \xrightarrow{\alpha} X$  is a  $P_L$ -algebra,

$$\mathbb{P}P_{U}X \cong P_{L}P_{U}^{2}X \xrightarrow{P_{L}\mu_{X}^{U}} P_{L}P_{U}X \cong P_{U}P_{L}X \xrightarrow{P_{U}\alpha} P_{U}X$$

is a  $\mathbb{P}$ -algebra and  $\eta_X^U \colon X \to \mathrm{P}_\mathrm{U} X$  is a  $\mathrm{P}_\mathrm{L}$ -algebra morphism;

▶ for any  $\mathbb{P}$ -algebra  $\mathbb{P}Y \xrightarrow{\beta} Y$  and  $P_L$ -algebra morphism  $f \colon X \to Y$ , there is a unique  $\mathbb{P}$ -algebra morphism  $\overline{f} \colon P_U X \to Y$  such that

$$\begin{array}{c|c}
P_{U}X & \xrightarrow{P_{U}f} & P_{U}Y \\
 & \downarrow & \downarrow \\
 & X & \xrightarrow{f} & Y.
\end{array}$$

# **Proposition**

The forgetful functor  $\mathbb{P}$ -Alg  $\to P_U$ -Alg has a left adjoint.

#### **KZ-comonads**

The adjunctions  $P_L$ -Alg  $\stackrel{P_U}{\stackrel{\perp}{=}}$   $\mathbb{P}$ -Alg and  $P_U$ -Alg  $\stackrel{P_L}{\stackrel{\perp}{=}}$   $\mathbb{P}$ -Alg induce comonads on  $\mathbb{P}$ -Alg, denoted by  $\widetilde{P_U}$  and  $\widetilde{P_L}$  respectively.

#### **KZ-comonads**

The adjunctions  $P_L$ -Alg  $\stackrel{P_U}{ }$   $\mathbb{P}$ -Alg and  $P_U$ -Alg  $\stackrel{P_L}{ }$   $\mathbb{P}$ -Alg induce comonads on  $\mathbb{P}$ -Alg, denoted by  $\widetilde{P_U}$  and  $\widetilde{P_L}$  respectively.

#### **Definition**

Let  $\langle T, \varepsilon, \delta \rangle$  be a comonad on a poset enriched category  $\mathbb C$ , where T preserves the order on morphisms. Then, T is a KZ-comonad (coKZ-comonad) if  $T\varepsilon_X \leq \varepsilon_{TX}$  (resp.  $\varepsilon_{TX} \leq T\varepsilon_X$ ).

#### **KZ-comonads**

The adjunctions  $P_L$ -Alg  $\stackrel{P_U}{ }$   $\mathbb{P}$ -Alg and  $P_U$ -Alg  $\stackrel{P_L}{ }$   $\mathbb{P}$ -Alg induce comonads on  $\mathbb{P}$ -Alg, denoted by  $\widetilde{P_U}$  and  $\widetilde{P_L}$  respectively.

#### **Definition**

Let  $\langle T, \varepsilon, \delta \rangle$  be a comonad on a poset enriched category  $\mathbb C$ , where T preserves the order on morphisms. Then, T is a KZ-comonad (coKZ-comonad) if  $T\varepsilon_X \leq \varepsilon_{TX}$  (resp.  $\varepsilon_{TX} \leq T\varepsilon_X$ ).

# **Proposition**

 $\widetilde{P_U}$  is a KZ-comonad and  $\widetilde{P_L}$  is a coKZ-comonad on R-Alg.

 $\mathbb{P} X \xrightarrow{\alpha} X \iff h \text{ is a section of } \varepsilon_{\alpha}^{\widetilde{U}} \colon \mathrm{P}_{\mathrm{U}} X \to X.$ 

# **Scott topologies**

A subset  $U \subseteq P$  of a poset P is **Scott open** if it is upper closed and inaccessible by directed joins. The collection of Scott open subsets form a topology on P (Scott topology).

# **Scott topologies**

A subset  $U \subseteq P$  of a poset P is **Scott open** if it is upper closed and inaccessible by directed joins. The collection of Scott open subsets form a topology on P (Scott topology).

# **Proposition**

Let X be a locally compact locale (i.e. a locale s.t.  $\mathbb{S}^X$  exists). Then

- $\Omega \mathbb{S}^X$  is a Scott topology on  $\Omega X$ ;
- ΩX is a continuous lattice.

Thus, the following are equivalent for  $X, Y \in \mathbf{LKLoc}$ :

- ▶ a locale morphism  $f: \mathbb{S}^X \to \mathbb{S}^Y$ ;
- ▶ a Scott continuous map  $h: \Omega X \to \Omega Y$ ;
- ▶ a function  $h: \Omega X \to \Omega Y$  that preserves directed joins.

For a Scott continuous  $h \colon \Omega X \to \Omega Y$ , write  $\Sigma h \colon \mathbb{S}^X \to \mathbb{S}^Y$  for the corresponding locale morphism.

# **Embedding into P-Alg**

# **Proposition**

The assignment  $X \mapsto \mathbb{S}^X$  induces an embedding  $\mathbf{LKLoc}^{\mathrm{op}} \to \mathbb{P}\text{-}\mathbf{Alg}$ . In particular,  $\mathbb{S}^X$  has a unique  $\mathbb{P}$ -algebra structure.

For each locale map  $f: X \to Y$  in **LKLoc**, we have  $\mathbb{S}^f = \Sigma \Omega f$ .

# **Embedding into P-Alg**

# **Proposition**

The assignment  $X \mapsto \mathbb{S}^X$  induces an embedding  $\mathbf{LKLoc}^{\mathrm{op}} \to \mathbb{P}\text{-}\mathbf{Alg}$ . In particular,  $\mathbb{S}^X$  has a unique  $\mathbb{P}$ -algebra structure.

For each locale map  $f: X \to Y$  in **LKLoc**, we have  $\mathbb{S}^f = \Sigma \Omega f$ .



# **Main Results**

### The first duality $P_U \mathbb{S}^X \cong \mathbb{S}^{P_L X}$

### **Proposition**

If X locally compact, there is a natural isomorphism  $P_U \mathbb{S}^X \cong \mathbb{S}^{P_L X}$ .

### The first duality $P_U \mathbb{S}^X \cong \mathbb{S}^{P_L X}$

### **Proposition**

If X locally compact, there is a natural isomorphism  $P_U \mathbb{S}^X \cong \mathbb{S}^{P_L X}$ .

**1.**  $F \colon P_{\mathbf{U}} \mathbb{S}^X \to \mathbb{S}^{P_{\mathbf{L}}X}$  is defined by



## The first duality $P_U \mathbb{S}^X \cong \mathbb{S}^{P_L X}$

### **Proposition**

If X locally compact, there is a natural isomorphism  $P_U \mathbb{S}^X \cong \mathbb{S}^{P_L X}$ .

**1.**  $F : P_U \mathbb{S}^X \to \mathbb{S}^{P_L X}$  is defined by



**2.**  $G \colon \mathbb{S}^{\mathrm{P}_{\mathrm{L}}X} o \mathrm{P}_{\mathrm{U}}\mathbb{S}^{X}$  corresponds to a preframe morphism  $g \colon \Omega\mathbb{S}^{X} o \Omega\mathbb{S}^{\mathrm{P}_{\mathrm{L}}X}$ . If G were an inverse of F, we must have  $\Omega\Sigma\iota_{X}^{L}\dashv g$ . Since  $\Omega\Sigma\iota_{X}^{L}\dashv g \iff \mathrm{P}_{\mathrm{U}}\mu_{X}^{L}\cong \Sigma\Omega\Sigma\iota_{X}^{L}\dashv \Sigma g$ , the right adjoint  $\Sigma g$  corresponds to  $\mathrm{P}_{\mathrm{U}}\eta_{\mathrm{P}_{\mathrm{L}}X}^{L}$  by

$$\mathbb{S}^{\mathbb{S}^{X}} \xrightarrow{\Sigma g} \mathbb{S}^{\mathbb{P}_{L}X}$$

$$\cong \bigvee_{P_{U}P_{L}X} \xrightarrow{P_{U}\eta_{P_{L}X}^{L}} P_{U}P_{L}P_{L}X$$

### Suplattice and P<sub>L</sub>-algebra homomorphisms

### **Theorem**

For any locally compact locales X, Y, there is a natural isomorphisms

$$P_L\text{-}\mathbf{Alg}(\mathbb{S}^X,\mathbb{S}^Y)\cong\mathbf{SupLat}(\Omega X,\Omega Y).$$

#### Proof.

$$\begin{aligned} \mathbf{SupLat}(\Omega X, \Omega Y) &\cong \mathbf{LKLoc}(Y, \mathbf{P}_{\mathbf{L}}X) \\ &\cong \mathbb{P}\text{-}\mathbf{Alg}(\mathbb{S}^{\mathbf{P}_{\mathbf{L}}X}, \mathbb{S}^{Y}) \\ &\cong \mathbb{P}\text{-}\mathbf{Alg}(\mathbf{P}_{\mathbf{U}}\mathbb{S}^{X}, \mathbb{S}^{Y}) \\ &\cong \mathbf{P}_{\mathbf{L}}\text{-}\mathbf{Alg}(\mathbb{S}^{X}, \mathbb{S}^{Y}). \end{aligned}$$

# $P_L$ -algebras and $\widetilde{P_U}$ -coalgebras



### Lemma

The composite  $\mathbb{S}^{\eta_X^L} \circ F$  is the counit  $\varepsilon_{\mathbb{S}^X}^{\widetilde{U}}$  of  $\widetilde{\mathrm{P}_{\mathrm{U}}}$ .

## $P_L$ -algebras and $\widetilde{P_U}$ -coalgebras

From the diagram 
$$P_U \mathbb{S}^X \xrightarrow{F} \mathbb{S}^{P_L X}$$
 we get  $\eta^U_{\mathbb{S}^X} \uparrow \mathbb{S}^{P_L X}$ .

#### Lemma

The composite  $\mathbb{S}^{\eta_X^L} \circ F$  is the counit  $\widetilde{\varepsilon_{\mathbb{S}^X}^U}$  of  $\widetilde{\mathrm{P_U}}$ .

**Proof.** By definition, the counit of the comonad  $P_U$  satisfies



# $P_L$ -algebras and $\widetilde{P_U}$ -coalgebras

 $P_L$ -Alg<sub>LK</sub>: the category of  $P_L$ -algebras on LKLoc.

 $\widetilde{P_U}\text{-}\mathbf{coAlg}\text{:}$  the category of  $\widetilde{P_U}\text{-}\text{coalgebras}$  on  $\mathbb{P}\text{-}\mathbf{Alg}.$ 

### **Theorem**

The embedding  $\mathbf{LKLoc}^{op} \xrightarrow{\mathbb{S}^{(-)}} \mathbb{P}$ -Alg restricts to an embedding  $P_L$ -Alg\_{LK}  $\to \widetilde{P_U}$ -coAlg.

# $P_L\text{-algebras}$ and $\widetilde{P_U\text{-coalgebras}}$

 $P_L$ -Alg<sub>LK</sub>: the category of  $P_L$ -algebras on LKLoc.

 $\widetilde{P_U}$ -coAlg: the category of  $\widetilde{P_U}$ -coalgebras on  $\mathbb{P}$ -Alg.

#### **Theorem**

The embedding LKLoc<sup>op</sup>  $\xrightarrow{\mathbb{S}^{(-)}}$   $\mathbb{P}$ -Alg restricts to an embedding  $P_L$ -Alg<sub>LK</sub>  $\to \widetilde{P_U}$ -coAlg.

**Proof.** If  $P_LX \xrightarrow{\alpha} X$  is a  $P_L$ -algebra, then  $\mathbb{S}^X \xrightarrow{\mathbb{S}^{\alpha}} \mathbb{S}^{P_LX} \cong P_U\mathbb{S}^X$  is a  $P_U$ -coalgebra structure on  $\mathbb{S}^X$ :



## The second duality $P_L \mathbb{S}^X \cong \mathbb{S}^{P_U X}$

### **Proposition**

If X locally compact, there is a natural isomorphism  $P_L \mathbb{S}^X \cong \mathbb{S}^{P_U X}$ .

## The second duality $P_L \mathbb{S}^X \cong \mathbb{S}^{P_U X}$

### **Proposition**

If X locally compact, there is a natural isomorphism  $P_L \mathbb{S}^X \cong \mathbb{S}^{P_U X}$ .

**Proof.** We have natural isomorphisms:

$$\mathbb{S}^{\mathbf{P}_L\mathbb{S}^X}\cong\mathbf{P}_U\mathbb{S}^{\mathbb{S}^X}\cong P_UP_LP_UX\cong P_LP_UP_UX\cong\mathbb{S}^{\mathbb{S}^{P_UX}}.$$

Since  $\mathbf{LKLoc}^{\mathrm{op}} \xrightarrow{\mathbb{S}^{(-)}} \mathbb{P}\text{-}\mathbf{Alg}$  is an embedding, we have an isomorphism  $H \colon \mathrm{P_L}\mathbb{S}^X \xrightarrow{\cong} \mathbb{S}^{\mathrm{P_U}X}$ .

#### **Theorem**

For any locally compact locales X, Y, there is a natural isomorphisms  $P_U$ -Alg( $\mathbb{S}^X, \mathbb{S}^Y$ )  $\cong$  **PrFrm**( $\Omega X, \Omega Y$ ).

# $P_U\text{-algebras}$ and $\widetilde{P_L}\text{-coalgebras}$

### Lemma



# $P_{II}$ -algebras and $\widetilde{P_{II}}$ -coalgebras

#### Lemma





# $P_U$ -algebras and $\widetilde{P_L}$ -coalgebras

## Lemma



 $\mathbb{S}^{P_L\mathbb{S}^X} \xleftarrow{\mathbb{S}^H} \mathbb{S}^{\mathbb{S}^{P_UX}}$  Proof. It suffices to show that  $\mathbb{S}^{\eta_{\mathbb{S}^X}^L} \bigvee_{\mathbb{S}^{e^{\eta_Y^U}}} \mathbb{S}^{\mathbb{S}^{P_UX}}$ 



commutes.

# $P_U\text{-algebras}$ and $\widetilde{P_L}\text{-coalgebras}$

### **Theorem**

 $\label{eq:coalg} \begin{array}{l} \textit{The embedding } \mathbf{LKLoc}^{op} \xrightarrow{\mathbb{S}^{(-)}} \mathbb{P}\text{-}\mathbf{Alg} \textit{ restricts to an embedding} \\ P_U\text{-}\mathbf{Alg}_{LK} \to \widetilde{P_L}\text{-}\mathbf{coAlg}. \end{array}$ 

#### References



S. Vickers.

The double powerlocale and exponentiation: A case study in geometric reasoning.

Theory Appl. Categ., 12(13):372-422, 2004.