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Background
Theorem (Hyland 1983)

A locale X is locally compact if and only if the exponential SX over
Sierpinski locale S exists.

LKLoc: the category of locally compact locales.

Corollary
There is an adjunction (=)
— X\
LKLoc 1 LKLoc®,
~N~—

s(-)
induced by the natural isomorphism
LKLoc(X,S") = LKLoc(X x Y,S)
=~ LKLoc(Y x X,S)
>~ LKLoc(Y,S").
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Background

Question
What is a monad on LKLoc induced by the adjunction?

s(=)
— A,

LKLoc 1 LKLoc,
\_/
s(=)
Theorem (Vickers 2004)
S8 =~ PyP X = P PyX

P.: the lower powerlocale monad.
Py: the upper powerlocale monad.

Proposition (de Brecht & K 2016)

PuS¥ @ SPLX & P SX =~ sPuX. So what?



Locales

Definition

A frame is a poset with arbitrary joins and finite meets that
distributes over joins. A frame homomorphism is a function that
preserves finite meets and all joins. The category Loc of locales is
the opposite of the category of frames.

Notations

X,Y : locales.
QX : the frame corresponding to a locale X.

af

QY — QX : the frame homomorphism corresponding to a
locale mapf: X — Y.



Lower and Upper Powerlocales




Definition
A suplattice is a poset with arbitrary joins. A suplattice

homomorphism is a function that preserves all joins. Write
SupLat for the category of suplattices.

The forgetful functor U: Frm — SupLat has a left adjoint
F: SupLat — Frm:
» for each suplattice D, there exists a frame F(D) and a
suplattice homomorphism /5: D — F(D),
» for any frame Y and a suplattice homomorphism f: D — Y,
there exists a unique frame homomorphism f: F(D) — Y
such that

~I

F(D) -/~ v.



Lower powerlocales

Definition
Let X be a locale. The lower powerlocale P X is the locale
corresponding to the frame F(U(Q2X)).

The lower powerlocales form a monad (Pp, %, L), where nk and
p% are given by

L L

Qny Quy
QPLX — QX QPLX e QPLPLX

LT LT TL
15 15 L
X f X Py X

Ox ax — X - QP X.



Definition

A preframe is a poset with directed joins and finite meets which
distributes over directed joins. A preframe homomorphism is a
function that preserves finite meets and directed joins. Write
PrFrm for the category of preframes.

The forgetful functor U: Frm — PrFrm has a left adjoint
H: PrFrm — Frm:
» for each preframe D, there exists a frame H(D) and a
preframe homomorphism .4: D — H(D),
» for any frame Y and a preframe homomorphism 4: D — Y,
there exists a unique frame homomorphism z: H(D) — Y
such that



Upper powerlocales

Definition
Let X be a locale. The upper powerlocale PyX is the locale
corresponding to the frame H(U(Q2X)).

The upper powerlocales form a monad (Py, 7Y, 1Y), where n{ and
u¥ are given by

Q”])l(] QM)[(/
QPUX —— QX QPUX e QPUPUX

U U U

L L L

XT f XT T PyX
idox U v

Ox Ox X~ QPyX.




Order Enrichment and Distributivity



Order enrichments

Definition
The category of Poset of posets is a poset enriched category (i.e.

homesets are posets), where morphisms are ordered pointwise.
Loc is poset-enriched by specialization order given by

def
f<g <:e> Qf <poset §28

def
& (W e V) (y) < Qg(y).
Definition
In a poset enriched category C, a morphism f: X — Y is the left
adjointto g: ¥ — X, written f 1 g, ifidy < gof & fog <idy.



Order enrichments

Lemma

For any locale X, we have (in Poset)
> % A (<= 1§ o Qg < idopx);
> Qng = L)l(] (<= idop,x < L)l(] o Qn}{)

Qnk QnY
QP X — % Qx QPuX — %o Qx

L U

Qx 192:¢



KZ-monads
Definition
Let (T, n, 1) be a monad on a poset enriched category C, where T
preserves the order on morphisms. Then, T is a KZ-monad
(cokZ-monad) if Tnx < nrx (nrx < Tnx).
Proposition

(P, ", ut) is a KZ-monad and (P, nY, uV) is a coKZ-monad.



KZ-monads
Definition

Let (T, n, 1) be a monad on a poset enriched category C, where T
preserves the order on morphisms. Then, T is a KZ-monad
(cokZ-monad) if Tnx < nrx (nrx < Tnx).

Proposition

(P, ", ut) is a KZ-monad and (P, nY, uV) is a coKZ-monad.

Proposition
Let (T,n, u) be a KZ-monad on a poset enriched category C.
Then, the following are equivalent.
1. a: TX — X is a T-algebra;
2. adnx & aony =idy;
3. aonx = idy.
In particular, T-algebra structure on X (if it exists) is unique.



Distributivity
Let (T,n", u") and (S,n°, u5) be monads. A distributive law of T

over S is a natural transformation o: So T — T o S which makes
the diagrams commutes.

SLT-SOT&T SoToTLT>SoT<MS;TSoSoT
oTy VSo

S Ul i ToSoT o §oToS§
Tos Toy T 0 yos

ToToS ——= ToS<~——ToSoS.

Then, T o S is a monad with

S T
n=id s 5 105,

W=To0SoToS I ToToS0S 5% 70505 ™ Tos.



Distributivity

Let (T,n", u") and (S,n°, u5) be monads. A distributive law of T
over S is a natural transformation o: So T — T o S which makes
the diagrams commutes.

SLT>SOT<£T SOTOTL-SOT&SOSOT
oTy VSo

S Ul i ToSoT o §oToS§
Tos Toy - s yos

ToToS "2 Tos <™ ToSoS.
Then, T o S is a monad with
S T
n=1id T8 5% 105,

W=To0SoToS I ToToS0S 5% 70505 ™ Tos.

Proposition (Vickers 2004)

There is a natural isomorphism Py o Py = Py o Py, which (together
with its inverse) is a distributive law of Pr. over Py and vice versa.
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(equivalently the composite Py o Py).
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Double powerlocales

Definition
A double powerlocale P on Loc is the composite Py o Pr,
(equivalently the composite Py o Py).

Lemma (Vickers 2004)

Every P-algebra is also Py -algebra and Py-algebra. Moreover,
P-algebra structure on a object X (if it exists) is unique.

Proof. If PX = X is an P-algebra, its P; -algebra structure is

P U
PLX % PuPLX 2 PX % X,

which is a retract of nk: X — P_X (note: P is a KZ-monad). g



Proposition

The forgetful functor P-Alg — Pr -Alg has a left adjoint:
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» IfPLX = X is a P_-algebra,

P, U
PPuX 2 PLPu2X —%5 P PyX = PuPLX Y% PuX
is a P-algebra and n}{: X — PyX is a Pp-algebra morphism;

» for any P-algebra PY i Y and Pp-algebra morphismf: X — Y,
there is a unique IP-algebra morphism f: PyX — Y such that

P
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| \ |

X Y.




Proposition

The forgetful functor P-Alg — Pr -Alg has a left adjoint:
» IfPLX = X is a P_-algebra,

P, U
PPuX 2 PLPu2X —%5 P PyX = PuPLX Y% PuX
is a P-algebra and n}{: X — PyX is a Pp-algebra morphism;

» for any P-algebra PY i Y and Pp-algebra morphismf: X — Y,
there is a unique IP-algebra morphism f: PyX — Y such that

P
Pux — . py

| \ |

X Y.

Proposition

The forgetful functor P-Alg — Py-Alg has a left adjoint.
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KZ-comonads
Py PL
The adjunctions P;-Alg 1~ P-Alg and Py-Alg 1 = P-Alg
induce comonads on P-Alg, denoted by Py and Py, respectively.
Definition
Let (T, e, ) be a comonad on a poset enriched category C, where

T preserves the order on morphisms. Then, T is a KZ-comonad
(coKZ-comonad) if Tex < egx (resp. erx < Tex).

Proposition

13; is a KZ-comonad and f{ is a coKZ-comonad on R-Alg.

Ph
PX —> PPyX

P-Alg morphism al ig{}a is a lsa-coalgebra structure on

X — pyx

PX % X <= hisasection of eV: PyX — X.



Scott topologies

A subset U C P of a poset P is Scott open if it is upper closed and
inaccessible by directed joins. The collection of Scott open subsets
form a topology on P (Scott topology).



Scott topologies

A subset U C P of a poset P is Scott open if it is upper closed and
inaccessible by directed joins. The collection of Scott open subsets
form a topology on P (Scott topology).

Proposition

Let X be a locally compact locale (i.e. a locale s.t. S* exists). Then
» QSX is a Scott topology on QX ;
» QX is a continuous lattice.
Thus, the following are equivalent for X, Y € LKLoc:
» alocale morphismf: SX — SY;
» a Scott continuous map h: QX — QY;
» afunction h: QX — QY that preserves directed joins.

For a Scott continuous /: QX — QY, write Sh: S¥ — SY for the
corresponding locale morphism.



Embedding into P-Alg

Proposition

The assignment X — SX induces an embedding
LKLoc® — P-Alg. In particular, S* has a unique P-algebra
structure.

For each locale map f: X — Y in LKLoc, we have S/ = XQf.



Embedding into P-Alg

Proposition

The assignment X — SX induces an embedding
LKLoc® — P-Alg. In particular, S* has a unique P-algebra
structure.

For each locale map f: X — Y in LKLoc, we have S/ = XQf.

PL Py

3 /)

LKLoc ——— P-Alg
7N

Py ISZ



Main Results



The first duality PyS¥ =~ SPiX
Proposition

If X locally compact, there is a natural isomorphism PyS* = SPLX,



The first duality PyS¥ =~ SPiX
Proposition

If X locally compact, there is a natural isomorphism PyS* = SPLX,

1. F: PgS¥ — SPX s defined by

PyXik
PySX % pyShX

] TN e

SX SPLX
ZL)L(



The first duality PyS¥ =~ SPiX
Proposition
If X locally compact, there is a natural isomorphism PyS* = SPLX,

1. F: PgS¥ — SPX s defined by

PyZik
PuS¥ %, pSPiX

nng F \L(QPLX)U
SX _ SPLX
ZL)L(
2. G: SPX — PyS¥ corresponds to a preframe morphism
g: OS¥ — QSPX | If G were an inverse of F, we must have
Q2L Hg. Since OXk Hg < Pyuk 2 TOXE - Sg, the
right adjoint $¢ corresponds to Py, by

SSX Xg SSPLX
N l/ PU?7 leL X l N
PyPLX PyPLPLX.



Suplattice and P, -algebra homomorphisms

Theorem

For any locally compact locales X, Y, there is a natural
isomorphisms

Py -Alg(S¥,S") = SupLat(QX, QY).

Proof.

SupLat(2X,QY) = LKLoc(Y, P X)
=~ P-Alg(SPX sY)
>~ P-Alg(PyS*, SY)
=~ p_-Alg(S¥,SY).



P -algebras and ?U-coalgebras
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P -algebras and ?U-coalgebras

Py sX F SPLX Py SX¥ —— - sPhX,

From the diagram ,, | we get 7%/ /
sX X EL{‘\, SX S"x
: <
Lemma
The composite S" o F is the counit ng of 135

Proof. By definition, the counit of the comonad 135 satisfies

U
PUSX L SX.

U
7,
X T idgx
SX



P -algebras and ?U-coalgebras

PL-Alg; x: the category of P -algebras on LKLoc.
PNU—coAlg: the category of f’E-coalgebras on P-Alg.
Theorem
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P -Alg; x — Pyu-coAlg.



P -algebras and ?U-coalgebras

PL-Alg; x: the category of P -algebras on LKLoc.
PNU—coAlg: the category of f’E-coalgebras on P-Alg.
Theorem

)
The embedding LKLoc® LA P-Alg restricts to an embedding
P -Alg; x — Pyu-coAlg.

Proof. If PLX % X is a Py -algebra, then §¥ 25 §PLX = pys¥ is a
Py-coalgebra structure on S¥:

1%

SO(

X — X\
§C s S F PuS*

ESX |:|



The second duality P; S¥ =~ SPuX

Proposition

IfX locally compact, there is a natural isomorphism Py SX = SPuX,



The second duality P; S¥ &~ SFuX

Proposition

IfX locally compact, there is a natural isomorphism Py SX = SPuX,

Proof. We have natural isomorphisms:

SPLS" = pysS' = pp, PyX = PLPyPuX = S5V

)
Since LKLoc® 2 P-Alg is an embedding, we have an

oY

isomorphism H: P S¥ — SPuX, O

Theorem

For any locally compact locales X, Y, there is a natural
isomorphisms Py -Alg(S*, SY) = PrFrm(QX, QY).
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Py-algebras and ﬁ-coalgebras

Lemma
PLS¥ — > §PuX,

The diagram commutes: nng /
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SX
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Proof. It suffices to show that ¢ J{ / commutes.
S'sX cn)l(]
SSX Nid



Py-algebras and ﬁ-coalgebras

Lemma
PLS¥ — > §PuX,

The diagram commutes: nng /
ST

SX
SPLSX sH SSPUX
Proof. It suffices to show that ¢ j{ commutes.
ssx Sgn’l(]
ss*

Fex
v N

SPLSX SV < P PyPyX <—— PyPLPyX ~—— PySS*

PLPy 7]}{ =~
Ss"x PLpf

”sx
S% < PLPUX£_—PyPLX PyPyPLX.

(1) 0




Py-algebras and ﬁ-coalgebras

Theorem

)
The embedding LKLoc” LA P-Alg restricts to an embedding
Py-Alg; x — Pr-coAlg.
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