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A base is an integer b ≥ 2.

A real number α is normal in base b if any two non-empty
strings of equal length appear equally often (asymptotically)
in the base-b expansion of the fractional part {α} = α mod 1
of α.

A real number α is absolutely normal if it is normal in every
base.
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Theorem (Borel, 1909). Almost every real number is
absolutely normal.

Theorem (Turing, late 1930s). There is an algorithm that
computes an absolutely normal number.

Theorem (Becher, Heiber, and Slaman, 2013). There is an
algorithm that computes an absolutely normal number α in
polynomial time. (It computes the successive bits of the
binary expansion of α, with the nth bit appearing in time
polynomial in n.)
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Our result today: An algorithm that computes an absolutely
normal number α in nearly linear time.

It computes the successive bits of the binary expansion of α,
with the nth bit appearing within n(log n)O(1) steps.

This was called nearly linear time by Gurevich and Shelah
(1989), who proved that nearly linear time – unlike linear
time! – is model robust.
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Martingales

Σb = {0, . . . , b − 1} the base b alphabet
Σ∗b are finite sequences, Σ∞b infinite. sequences
x � n is the length-n prefix of x .
A martingale is a function d : Σ∗b → [0..∞) with the fairness
property that, for every finite sequence w ,

d(w) =

∑
i∈Σb

d(wi)

b
.

A martingale d succeeds on an infinite sequence x ∈ Σ∞b if

limsupnd(x � n) =∞
(x can be predicted by d).
Lebesgue measure can be defined in terms of martingales (a
set has measure 0 if there is a martingale succeeding on every
element of the set).
And you have to use martingales to have a useful measure on
small complexity classes ...
... because they aggregate a lot of information!



Martingales

But how fast do they succeed?
Let g : Σ∗b → [0,∞) (may or may not be a martingale) and
S ∈ Σ∞b .

g succeeds on S (S ∈ S∞[g ]) if lim supn→∞ g(S � n) =∞.

g f (n)-succeeds on S (S ∈ S f (n)[g ]) if

lim supn→∞
log g(S�n)

log f (n) > 1.

g succeeds exponentially on S (S ∈ Sexp[g ]) if ∃ε > 0

S ∈ S2εn [g ].



Lempel-Ziv martingales

Schnorr and Stimm (1972) implicitly defined finite-state
martingales and proved that every sequence S ∈ Σ∞b obeys the
following dichotomy:

1 If S is b-normal, then no finite-state base-b martingale
succeeds on S . (In fact, every finite-state base-b martingale
decays exponentially on S .)

2 If S is not b-normal, then some finite-state base-b martingale
succeeds exponentially on S .



Lempel-Ziv martingales

Feder (1991) implicitly defined the base-b Lempel-Ziv
martingale dLZ(b) and proved that it is at least as successful on
every sequence as every finite-state martingale.

∴ if S ∈ Σ∞b is not normal, then S ∈ Sexp[dLZ(b)].
∴ x ∈ (0, 1) is absolutely normal if none of the martingales dLZ(b)

succeed exponentially on the base-b expansion of x .
Moreover, dLZ(b) is fast and has a beautiful theory.
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Lempel-Ziv martingales

How dLZ(b) works:
Parse w ∈ Σ∗b into distinct phrases, using a growing tree whose
leaves are all of the previous phrases.
At each step, bet on the next digit in proportion to the number of
leaves below each of the b options.



Savings Accounts

The value of Lempel-Ziv martingale dLZ(b) on a certain
infinite string S can fluctuate a lot.

This makes base change more complicated (and time
consuming).

We use the notion of “savings account” here. That is, we
construct an alternative martingale that keeps money aside
for the bad times to come

This is a (refinement of a) technique known since the 1970s.

Definition

A savings account for a martingale d : Σ∗b → [0,∞) is a
nondecreasing function g : Σ∗b → [0,∞) such that d(w) ≥ g(w)
for every w .
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Savings Accounts

We construct a new martingale d ′b with a savings account g ′b
that is a conservative version of dLZ(b).

g ′b succeeds at least on non-b-normal sequences.

Both d ′b and g ′b can be computed in nearly linear time.

If S 6∈ S∞[g ′b] then S is b-normal.
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Base Change

We want an absolutely normal real number α, that is, the
base b representation seqb(α) is not in S∞[d ′b].

For this we convert d ′b into a base-2 martingale d
(2)
b

succeeding on the base-2 representations of the reals with
base-b representation in S∞[d ′b].

Again, d
(2)
b succeeds on seq2(real(S∞[d ′b]).

We use Carathéodory construction to define measures.

Computing in nearly linear time is also delicate.

In fact our computation d̂
(2)
b approximates d

(2)
b slowly

|d̂ (2)
b (y)− d

(2)
b (y)| ≤ 1

|y |3

.
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Absolutely Normal Numbers

From previous steps we have a family of martingales (d
(2)
b )b

so that d
(2)
b succeeds on base-2 representations of

non-b-normal sequences.

For each b we have a nearly linear time computation d̂
(2)
b .

We want to construct S 6∈ S∞[d
(2)
b ] for every b.

Nearly linear time makes it painful to construct a martingale d

for the union of S∞[d
(2)
b ].

Then we diagonalize over d to construct S .
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Time bounds ...

All the steps were performed in online nearly linear time on a
common time bound independent of base b.

Many technical details were simplified in this presentation ...
please read our paper.



Thank you!


