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@ Theorem (Becher, Heiber, and Slaman, 2013). There is an
algorithm that computes an absolutely normal number « in
polynomial time. (It computes the successive bits of the
binary expansion of «, with the n'" bit appearing in time
polynomial in n.)
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@ Our result today: An algorithm that computes an absolutely
normal number « in nearly linear time.

@ It computes the successive bits of the binary expansion of «,
with the n' bit appearing within n(log n)°(%) steps.

@ This was called nearly linear time by Gurevich and Shelah
(1989), who proved that nearly linear time — unlike linear
time! — is model robust.
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@ Lempel-Ziv martingales (and why)
© Savings Accounts

@ Base Change

© Absolutely Normal Numbers

@ Open Problem (if time)



Martingales

Y, =1{0,...,b— 1} the base b alphabet
;, are finite sequences, >3° infinite. sequences
x [ nis the length-n prefix of x.
A martingale is a function d : ¥} — [0..00) with the fairness
property that, for every finite sequence w,

ey d(wi
d(w):z'ezz W)

@ A martingale d succeeds on an infinite sequence x € ¥§° if

limsuppd(x | n) =

(x can be predicted by d).

@ Lebesgue measure can be defined in terms of martingales (a
set has measure 0 if there is a martingale succeeding on every
element of the set).

@ And you have to use martingales to have a useful measure on
small complexity classes ...

@ ... because they aggregate a lot of information!



Martingales

But how fast do they succeed?
Let g : X} — [0,00) (may or may not be a martingale) and
Sexy.
e g succeeds on S (S € S%|[g]) if limsup,_,., g(S | n) = .
e g f(n)-succeeds on S (S € Sf("[g]) if

|
limsup,_, oligg,(,(n)") > 1.

e g succeeds exponentially on S (§ € SP[g]) if 3¢ > 0
S e S?7[g]




Lempel-Ziv martingales

Schnorr and Stimm (1972) implicitly defined finite-state
martingales and proved that every sequence S € ¥}7° obeys the
following dichotomy:

@ If S is b-normal, then no finite-state base-b martingale
succeeds on S. (In fact, every finite-state base-b martingale
decays exponentially on S.)

@ If S is not b-normal, then some finite-state base-b martingale
succeeds exponentially on S.
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Lempel-Ziv martingales

Feder (1991) implicitly defined the base-b Lempel-Ziv
martingale dy () and proved that it is at least as successful on
every sequence as every finite-state martingale.

- if S € X3° is not normal, then S € S™P[dy 7]

. x €(0,1) is absolutely normal if none of the martingales dy ()
succeed exponentially on the base-b expansion of x.

Moreover, dizp) is fast and has a beautiful theory.



Lempel-Ziv martingales

How dp7 (1) works:

Parse w € ¥} into distinct phrases, using a growing tree whose
leaves are all of the previous phrases.

At each step, bet on the next digit in proportion to the number of
leaves below each of the b options.
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Savings Accounts

@ The value of Lempel-Ziv martingale d 7, on a certain
infinite string S can fluctuate a lot.

@ This makes base change more complicated (and time
consuming).

@ We use the notion of “savings account” here. That is, we
construct an alternative martingale that keeps money aside
for the bad times to come

@ This is a (refinement of a) technique known since the 1970s.

Definition

A savings account for a martingale d : ¥} — [0,00) is a
nondecreasing function g : ¥} — [0,00) such that d(w) > g(w)
for every w.
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Savings Accounts

e We construct a new martingale d; with a savings account gj
that is a conservative version of dyz(p).

@ g, succeeds at least on non-b-normal sequences.
e Both dj and g can be computed in nearly linear time.
o If S ¢ S®[g]] then S is b-normal.
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@ We want an absolutely normal real number «, that is, the
base b representation seqy(c) is not in S*®°[d]].

For this we convert dj into a base-2 martingale dl(f)
succeeding on the base-2 representations of the reals with
base-b representation in 5°°[d]].

Again, d£()2) succeeds on seq(real(S>°[d}]).

We use Carathéodory construction to define measures.

Computing in nearly linear time is also delicate.

@ In fact our computation d1(>2) approximates d,()z) slowly

2y 1
1dP(y) — dP(v)] < e
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Absolutely Normal Numbers

@ From previous steps we have a family of martingales (dl(,2))b

2 .
so that d,g ) succeeds on base-2 representations of
non-b-normal sequences.

—

@ For each b we have a nearly linear time computation dl(f).

We want to construct S ¢ S°°[dl()2)] for every b.

Nearly linear time makes it painful to construct a martingale d
for the union of 5°°[dl(32)].

@ Then we diagonalize over d to construct S.



@ All the steps were performed in online nearly linear time on a
common time bound independent of base b.

@ Many technical details were simplified in this presentation ...
please read our paper.



Thank you!



