Computing Absolutely Normal Numbers in Nearly Linear Time

Jack H. Lutz and Elvira Mayordomo

Iowa State University, Universidad de Zaragoza

Continuity, Computability, Constructivity 2017 Loria, Nancy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• A <u>base</u> is an integer $b \ge 2$.

- A <u>base</u> is an integer $b \ge 2$.
- A real number α is <u>normal</u> in base *b* if any two non-empty strings of equal length appear equally often (asymptotically) in the base-*b* expansion of the fractional part $\{\alpha\} = \alpha \mod 1$ of α .

- A <u>base</u> is an integer $b \ge 2$.
- A real number α is normal in base *b* if any two non-empty strings of equal length appear equally often (asymptotically) in the base-*b* expansion of the fractional part $\{\alpha\} = \alpha \mod 1$ of α .
- A real number α is absolutely normal if it is normal in every base.

• Theorem (Borel, 1909). Almost every real number is absolutely normal.

- Theorem (Borel, 1909). Almost every real number is absolutely normal.
- Theorem (Turing, late 1930s). There is an algorithm that computes an absolutely normal number.

- Theorem (Borel, 1909). Almost every real number is absolutely normal.
- Theorem (Turing, late 1930s). There is an algorithm that computes an absolutely normal number.
- Theorem (Becher, Heiber, and Slaman, 2013). There is an algorithm that computes an absolutely normal number α in polynomial time. (It computes the successive bits of the binary expansion of α , with the n^{th} bit appearing in time polynomial in n.)

• Our result today: An algorithm that computes an absolutely normal number α in nearly linear time.

• Our result today: An algorithm that computes an absolutely normal number α in nearly linear time.

• It computes the successive bits of the binary expansion of α , with the *n*th bit appearing within $n(\log n)^{O(1)}$ steps.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Our result today: An algorithm that computes an absolutely normal number α in nearly linear time.

- It computes the successive bits of the binary expansion of α , with the n^{th} bit appearing within $n(\log n)^{O(1)}$ steps.
- This was called **nearly linear time** by Gurevich and Shelah (1989), who proved that nearly linear time unlike linear time! is model robust.

- Martingales (and why)
- Lempel-Ziv martingales (and why)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Savings Accounts
- Base Change
- Solutely Normal Numbers
- Open Problem (if time)

Martingales

- $\Sigma_b = \{0, \dots, b-1\}$ the base b alphabet
- Σ_b^* are finite sequences, Σ_b^∞ infinite. sequences
- $x \upharpoonright n$ is the length-*n* prefix of *x*.
- A martingale is a function d : Σ^{*}_b → [0..∞) with the fairness property that, for every finite sequence w,

$$d(w) = \frac{\sum_{i \in \Sigma_b} d(wi)}{b}.$$

• A martingale d succeeds on an infinite sequence $x \in \Sigma_b^{\infty}$ if $limsup_n d(x \upharpoonright n) = \infty$

(x can be predicted by d).

- Lebesgue measure can be defined in terms of martingales (a set has measure 0 if there is a martingale succeeding on every element of the set).
- And you **have** to use martingales to have a useful measure on small complexity classes ...
- ... because they aggregate a lot of information!

But how fast do they succeed? Let $g: \Sigma_b^* \to [0, \infty)$ (may or may not be a martingale) and $S \in \Sigma_b^{\infty}$.

- g succeeds on S ($S \in S^{\infty}[g]$) if $\limsup_{n \to \infty} g(S \upharpoonright n) = \infty$.
- g f(n)-succeeds on $S (S \in S^{f(n)}[g])$ if $\limsup_{n \to \infty} \frac{\log g(S \upharpoonright n)}{\log f(n)} > 1.$
- $g \text{ succeeds exponentially} \text{ on } S \ (S \in S^{\exp}[g]) \text{ if } \exists \epsilon > 0$ $S \in S^{2^{\epsilon n}}[g].$

Schnorr and Stimm (1972) implicitly defined **finite-state martingales** and proved that every sequence $S \in \Sigma_b^{\infty}$ obeys the following dichotomy:

- If S is b-normal, then no finite-state base-b martingale succeeds on S. (In fact, every finite-state base-b martingale decays exponentially on S.)
- If S is not b-normal, then some finite-state base-b martingale succeeds exponentially on S.

Feder (1991) implicitly defined the **base**-*b* **Lempel-Ziv** martingale $d_{LZ(b)}$ and proved that it is at least as successful on every sequence as every finite-state martingale.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Feder (1991) implicitly defined the **base**-*b* **Lempel-Ziv** martingale $d_{LZ(b)}$ and proved that it is at least as successful on every sequence as every finite-state martingale. \therefore if $S \in \Sigma_{b}^{\infty}$ is not normal, then $S \in S^{exp}[d_{LZ(b)}]$.

Feder (1991) implicitly defined the **base**-*b* **Lempel-Ziv** martingale $d_{LZ(b)}$ and proved that it is at least as successful on every sequence as every finite-state martingale. \therefore if $S \in \Sigma_b^{\infty}$ is not normal, then $S \in S^{exp}[d_{LZ(b)}]$. $\therefore x \in (0, 1)$ is absolutely normal if none of the martingales $d_{LZ(b)}$ succeed exponentially on the base-*b* expansion of *x*.

Feder (1991) implicitly defined the **base**-*b* **Lempel-Ziv martingale** $d_{LZ(b)}$ and proved that it is at least as successful on **every sequence** as every finite-state martingale. \therefore if $S \in \Sigma_b^{\infty}$ is not normal, then $S \in S^{exp}[d_{LZ(b)}]$. $\therefore x \in (0, 1)$ is absolutely normal if none of the martingales $d_{LZ(b)}$ succeed exponentially on the base-*b* expansion of *x*. Moreover, $d_{LZ(b)}$ is fast and has a beautiful theory.

How $d_{LZ(b)}$ works: Parse $w \in \Sigma_b^*$ into distinct **phrases**, using a growing tree whose leaves are all of the previous phrases. At each step, bet on the next digit in proportion to the number of leaves below each of the *b* options.

- The value of Lempel-Ziv martingale $d_{LZ(b)}$ on a certain infinite string S can fluctuate a lot.
- This makes base change more complicated (and time consuming).
- We use the notion of "savings account" here. That is, we construct an alternative martingale that **keeps money aside** for the bad times to come
- This is a (refinement of a) technique known since the 1970s.

- The value of Lempel-Ziv martingale $d_{LZ(b)}$ on a certain infinite string S can fluctuate a lot.
- This makes base change more complicated (and time consuming).
- We use the notion of "savings account" here. That is, we construct an alternative martingale that **keeps money aside** for the bad times to come
- This is a (refinement of a) technique known since the 1970s.

Definition

A savings account for a martingale $d : \Sigma_b^* \to [0, \infty)$ is a nondecreasing function $g : \Sigma_b^* \to [0, \infty)$ such that $d(w) \ge g(w)$ for every w.

 We construct a new martingale d'_b with a savings account g'_b that is a conservative version of d_{LZ(b)}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• g'_b succeeds at least on non-*b*-normal sequences.

 We construct a new martingale d'_b with a savings account g'_b that is a conservative version of d_{LZ(b)}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- g'_b succeeds at least on non-*b*-normal sequences.
- Both d'_b and g'_b can be computed in nearly linear time.
- If $S \notin S^{\infty}[g'_b]$ then S is *b*-normal.

Base Change

- We want an absolutely normal real number α, that is, the base b representation seq_b(α) is not in S[∞][d'_b].
- For this we convert d'_b into a base-2 martingale d⁽²⁾_b succeeding on the base-2 representations of the reals with base-b representation in S[∞][d'_b].

• Again, $d_b^{(2)}$ succeeds on $seq_2(real(S^{\infty}[d_b']))$.

Base Change

- We want an absolutely normal real number α, that is, the base b representation seq_b(α) is not in S[∞][d'_b].
- For this we convert d'_b into a base-2 martingale d⁽²⁾_b succeeding on the base-2 representations of the reals with base-b representation in S[∞][d'_b].

- Again, $d_b^{(2)}$ succeeds on $seq_2(real(S^{\infty}[d_b']))$.
- We use Carathéodory construction to define measures.
- Computing in nearly linear time is also delicate.

Base Change

- We want an absolutely normal real number α, that is, the base b representation seq_b(α) is not in S[∞][d'_b].
- For this we convert d'_b into a base-2 martingale d⁽²⁾_b succeeding on the base-2 representations of the reals with base-b representation in S[∞][d'_b].
- Again, $d_b^{(2)}$ succeeds on $seq_2(real(S^{\infty}[d_b']))$.
- We use Carathéodory construction to define measures.
- Computing in nearly linear time is also delicate.
- In fact our computation $d_b^{(2)}$ approximates $d_b^{(2)}$ slowly

$$|\widehat{d_b^{(2)}}(y) - d_b^{(2)}(y)| \le rac{1}{|y|^3}$$

- From previous steps we have a family of martingales (d_b⁽²⁾)_b so that d_b⁽²⁾ succeeds on base-2 representations of non-b-normal sequences.
- For each *b* we have a nearly linear time computation $d_h^{(2)}$.

- From previous steps we have a family of martingales (d_b⁽²⁾)_b so that d_b⁽²⁾ succeeds on base-2 representations of non-b-normal sequences.
- For each *b* we have a nearly linear time computation $d_b^{(2)}$.
- We want to construct $S \not\in S^{\infty}[d_b^{(2)}]$ for every *b*.
- Nearly linear time makes it painful to construct a martingale d for the union of $S^{\infty}[d_b^{(2)}]$.

- From previous steps we have a family of martingales (d_b⁽²⁾)_b so that d_b⁽²⁾ succeeds on base-2 representations of non-b-normal sequences.
- For each *b* we have a nearly linear time computation $d_b^{(2)}$.
- We want to construct $S \notin S^{\infty}[d_b^{(2)}]$ for every *b*.
- Nearly linear time makes it painful to construct a martingale d for the union of $S^{\infty}[d_b^{(2)}]$.

• Then we diagonalize over *d* to construct *S*.

- All the steps were performed in **online** nearly linear time on a common **time bound independent of base** *b*.
- Many technical details were simplified in this presentation ... please read our paper.

Thank you!