A Variant of EQU in which Open and Closed Subspaces are Complementary without Excluded Middle

Reinhold Heckmann

AbsInt Angewandte Informatik GmbH

Background

- Intuitionistic set theory (with powersets)
- PAL = Prime-Algebraic Lattices
 + Scott-continuous functions
- Products $\prod_{i \in I} L_i$; Exponentials $[L \to M]$
- $\Sigma = (P1, \subseteq)$ $0, 1 \in \Sigma$, and possibly more elements
- Scott-continuous $s: \Sigma \to \Sigma$ is determined by $s \cdot 0$ and $s \cdot 1$

Equilogical Spaces: Definition

- EQU: $X = (L_X, \sim_X)$ where L_X is in PAL and ' \sim_X ' is a PER on the points of L_X
- Notation: $|X| = \{a \in L_X \mid a \sim_X a\}$
- $f: X \to Y$ in EQU is $f: L_X \to L_Y$ Scott-continuous with $a \sim_X b \Rightarrow fa \sim_Y fb$
- $f,g:X\to Y$ are equal in EQU if $a\in |X| \Rightarrow fa\sim_Y ga$
- PAL \hookrightarrow EQU by $L \mapsto (L, =_L)$

Equilogical Spaces: Properties

- Well-pointed
- Products $\prod_{i \in I} X_i$ Exponentials $[Y \to Z]$ Equalizers
- For $p: X \to \Sigma$: Open subspace $O(p) = \{a \in |X| \mid pa = 1\}$ Closed subspace $C(p) = \{a \in |X| \mid pa = 0\}$
- Without EM, neither $O(p) \cup C(p) = |X|$ nor $C(p) \cup C(q) = C(p \land q)$ can be shown

Basic Idea for EQU2

- EQU: PER on points, forward morphisms, CCC, but open and closed subspaces not complementary
- LOC: Locales defined via opens
 - Morphisms in opposite direction hard to embed in CCC (ELOC uses PERs on generalized points and forward maps)
 - Open and closed sublocales are complementary thanks to additional structure (∧ and ∨) on opens
- EQU2: PER on opens of opens (double dual)
 - Forward morphisms → CCC
 - Open and closed subspaces are complementary thanks to additional structure

Double Dual

 $f\colon L \to M$

- In PAL: $\Omega L=[L o\Sigma]$ $\Omega f\colon \Omega L\leftarrow \Omega M$ $\Omega^2 L=[\Omega L o\Sigma]$ $\Omega^2 f\colon \Omega^2 L\to \Omega^2 M$
- $\eta_L: L \hookrightarrow \Omega^2 L$ $\eta_L a u = u a$ $\Omega^2 f \circ \eta_L = \eta_M \circ f$
- $\vec{\times}: \Omega^2 L \times \Omega^2 M \to \Omega^2 (L \times M)$ where $A \vec{\times} B = \lambda w^{\Omega(L \times M)}.A (\lambda a^L.B(\lambda b^M.w(a,b)))$
- We also need the "range" $\rho: \Omega^2 L \to [\Sigma \to \Sigma]$ where $\rho A = \lambda b^{\Sigma}.A(\aleph b)$ For all $u: \Omega L$, $\rho A 0 \leq A u \leq \rho A 1$

Restriction of Double Dual

- Problem: $\vec{\times}$, $\Omega^2 \pi_1$ and $\Omega^2 \pi_2$ are not well related Hence CCC cannot be shown if PERs on entire $\Omega^2 L$ are used
- Solution:
 - Restrict to subset $L^{\bullet} \subseteq \Omega^2 L$ of "fuzzy points"
 - More than points, with additional structure for O(p) and C(p)
 - Still similar to points CCC can be shown

Fuzzy Points

- $A:\Omega L\to \Sigma$ is in the image of $\eta_L:L\hookrightarrow \Omega^2 L$ iff A preserves finite meets and finite (hence all) joins iff A preserves empty meet, empty join, binary meet, binary join
- $L^{\bullet} \subseteq \Omega^2 L$:

Those A that preserve binary meet and binary join

$$A(u \wedge v) = Au \wedge Av$$
 $A(u \vee v) = Au \vee Av$

- Points are fuzzy points: $\eta_L: L \hookrightarrow L^{\bullet} \subseteq \Omega^2 L$
- All constant $K: \Omega L \to \Sigma$ are in L^{\bullet}

Fuzzy Points – Operations

- For $f:L\to M$, $\Omega^2 f:\Omega^2 L\to \Omega^2 M$ restricts to $f^{\bullet}:L^{\bullet}\to M^{\bullet}$
- $\vec{\times}: \Omega^2 L \times \Omega^2 M \to \Omega^2 (L \times M)$ restricts to $(-,-)^{\bullet}: L^{\bullet} \times M^{\bullet} \to (L \times M)^{\bullet}$
- If $\rho A_1 = \rho A_2$, then $\pi_i^{\bullet}(A_1, A_2)^{\bullet} = A_i$
- For $C \in (L \times M)^{\bullet}$, $(\pi_1^{\bullet}C, \pi_2^{\bullet}C)^{\bullet} = C$
- Not closed under ∧ and ∨
- If $s: \Sigma \to \Sigma$ and $A \in L^{\bullet} \subseteq [L \to \Sigma]$, then $s \circ A \in L^{\bullet}$

EQU2: Objects

- (L, \approx) where $L \in PAL$ and $\approx PER$ on L^{\bullet} such that
 - (1) $A \approx B \Rightarrow \rho A = \rho B$
 - (2) For all $s: \Sigma \to \Sigma$: $A \approx B \Rightarrow s \circ A \approx s \circ B$
 - (3) For all constant $K \in L^{\bullet}$: $K \approx K$
 - (4) For all jointly monic $M \subseteq [\Sigma \to \Sigma]$ (i.e. $(\forall m \in M. ma = mb) \Rightarrow a = b)$: $(\forall m \in M. m \circ A \approx m \circ B) \Rightarrow A \approx B$
- Notation: $|(L, \approx)| = \{a \in L \mid \eta \, a \approx \eta \, a\}$ $|(L, \approx)|^{\bullet} = \{A \in L^{\bullet} \mid A \approx A\}$

EQU2: Morphisms

- Let $X = (L_X, \approx_X)$ and $Y = (L_Y, \approx_Y)$.

 A morphism $f: X \to Y$ is a continuous function $f: L_X \to L_Y$ such that $A \approx_X A' \Rightarrow f^{\bullet}A \approx_Y f^{\bullet}A'$.
- $f,g:X\to Y$ are equal in EQU2 if $A\in |X|^{\bullet} \Rightarrow f^{\bullet}A\approx_Y g^{\bullet}A$
- Global points x: 1 → X
 correspond to elements of |X|,
 but equality is based on |X|
 — cannot show that EQU2 is well-pointed

EQU2: Cartesian Closed Category

- $\prod_{i \in I} (L_i, \approx_i) = (\prod_{i \in I} L_i, \approx)$ where $A \approx A'$ iff $\rho A = \rho A'$ and for all i in I, $\pi_i^{\bullet} A \approx_i \pi_i^{\bullet} A'$
- For inhabited *I*, the condition $\rho A = \rho A'$ is redundant
- For empty I: $1 = (1, \approx)$ where $A \approx A'$ iff $\rho A = \rho A'$ iff A = A'
- Exponential $[Y \to Z]$: $L_{[Y \to Z]} = [L_Y \to L_Z]$ For $H, H' \in L_{[Y \to Z]}^{\bullet}$, $H \approx_{[Y \to Z]} H'$ iff $(\rho H = \rho H' \text{ and } B \approx_Y B' \Rightarrow @^{\bullet}(H, B)^{\bullet} \approx_Z @^{\bullet}(H', B')^{\bullet})$ where $@: [L_Y \to L_Z] \times L_Y \to L_Z$

Embedding of PAL into EQU2

- \bullet $L \mapsto (L, =_{L} \bullet)$
- Full subcategory
- Embedding preserves products and exponentials

Subspaces

- Subspace S of $X = (L, \approx)$ is $S \subseteq |X|^{\bullet}$ such that
 - $(1) A \in S \& A \approx B \Rightarrow B \in S$
 - (2) For all $s: \Sigma \to \Sigma$, $A \in S \Rightarrow s \circ A \in S$
 - (3) For all constant $K \in L^{\bullet}$, $K \in S$
 - (4) For all jointly monic $M \subseteq [\Sigma \to \Sigma]$, $(\forall m \in M. m \circ A \in S) \Rightarrow A \in S$
- Every subspace S of X induces $X|_S = (L, \approx_S)$ where $A \approx_S B$ iff $A \approx B$ and $A \in S$ (and $B \in S$)

Meets and Joins of Subspaces of X

- Least subspace is set of constant functions
- Greatest subspace of X is |X|
- Inhabited meet: $\bigwedge_{i \in I} S_i = \bigcap_{i \in I} S_i$
- Inhabited join: $\bigvee_{i \in I} S_i = \mathcal{M}(\bigcup_{i \in I} S_i)$ where \mathcal{M} is a closure operator for property (4)
- Subspaces form a frame

Equalizers

- For $f,g:X\to Y$:
 - $E(f,g) = \{A \in |X|^{\bullet} \mid f^{\bullet}A \approx_Y g^{\bullet}A\}$ is subspace of X
 - $X|_{E(f,g)}$ is an equalizer of f and g
- Special case $Y = \Sigma$:
 - \approx_{Σ} is equality in Σ •
 - $f \cdot A =_{\Sigma} g \cdot A$ iff $Af =_{\Sigma} Ag$
- Open and closed subspaces: For $p: X \to \Sigma$:
 - $O(p) = E(p, K1) = \{A \in |X|^{\bullet} \mid Ap = A(K1)\}$
 - $C(p) = E(p, K0) = \{A \in |X|^{\bullet} \mid Ap = A(K0)\}$

Properties of Open and Closed Subspaces

•
$$O(K1) = |X|^{\bullet}$$

$$\mathbf{C}(\mathsf{K}\,1) = \mathbf{\bar{0}}$$

$$\bullet \quad \mathbf{O}(p \wedge q) = \mathbf{O}(p) \cap \mathbf{O}(q)$$

$$C(p \land q) = C(p) \lor C(q)$$

$$\bullet$$
 $O(K0) = \overline{\emptyset}$

$$C(K0) = |X|^{\bullet}$$

$$\bullet \quad \mathbf{O}(\bigvee_{i \in I} p_i) = \bigvee_{i \in I} \mathbf{O}(p_i)$$

$$C(\bigvee_{i\in I} p_i) = \bigcap_{i\in I} C(p_i)$$

•
$$O(p) \cap C(p) = \bar{\emptyset}$$

$$O(p) \vee C(p) = |X|^{\bullet}$$

Proof of $O(p) \cap C(p) = \overline{\emptyset}$

- $O(p) = \{A \in |X|^{\bullet} \mid Ap = A(K1)\}$ $C(p) = \{A \in |X|^{\bullet} \mid Ap = A(K0)\}$
- $O(p) \cap C(p) \supseteq \overline{\emptyset}$ is clear.
- For ' \subseteq ', let $A \in O(p) \cap C(p)$.
- Then Ap = A(K0) and Ap = A(K1).
- Hence A(K0) = A(K1), so A is constant and thus in $\overline{\emptyset}$.

Proof of $O(p) \vee C(p) = |X|^{\bullet}$

- $O(p) \vee C(p) \subseteq |X|^{\bullet}$ is clear. For ' \supseteq ', let $A \in |X|^{\bullet}$.
- Let $s_0, s_1 : \Sigma \to \Sigma$, $s_0 a = a \vee A p$, $s_1 a = a \wedge A p$
- Recall $C(p) = \{B \in |X|^{\bullet} \mid Bp = B(K0)\}.$ $(s_0 \circ A)(K0) = s_0(A(K0)) = A(K0) \lor Ap = Ap$ $(s_0 \circ A)p = s_0(Ap) = Ap \lor Ap = Ap$
- Hence $s_0 \circ A \in \mathbf{C}(p) \subseteq \mathbf{O}(p) \vee \mathbf{C}(p)$.
- In a similar way, $s_1 \circ A \in O(p) \subseteq O(p) \vee C(p)$.
- $\{s_0, s_1\}$ is jointly monic since in every distributive lattice $a \lor c = b \lor c \& a \land c = b \land c \Rightarrow a = b$.
- Property (4) gives $A \in O(p) \vee C(p)$.

Conclusion

- Definition of EQU2, a variant of EQU
- + EQU2 is a CCC (like EQU)
- In EQU2, open and closed subspaces are complementary even without Excluded Middle (not true for EQU)
- EQU2 is more complicated than EQU
- EQU2 is not necessarily well-pointed (but EQU is)
- ! With Excluded Middle, EQU2 and EQU are isomorphic categories