Geometric Lorenz attractors are computable

Daniel Graça^{1,2} Cristóbal Rojas³ Ning Zhong⁴

¹FCT, Universidade do Algarve, Portugal
²SQIG, Instituto de Telecomunicações, Portugal
³DM, Universidad Andres Bello, Chile
⁴DMS, University of Cincinnati, U.S.A.

27 June 2017

Geometric Lorenz attractors are computable

- In many applications one is interested in knowing how a certain class of systems behaves asymptotically.
- However we only have a very limited theoretical toolset to help us with this task.

- In many applications one is interested in knowing how a certain class of systems behaves asymptotically.
- However we only have a very limited theoretical toolset to help us with this task.
- Some successes: Peixoto basically solved in 1962 the problem of characterizing the asymptotic behaviour of (C¹) systems defined over a compact K ⊆ ℝ²: the limit sets can only consist of a finite number of (hyperbolic) equilibrium points and (hyperbolic) periodic orbits.

- In many applications one is interested in knowing how a certain class of systems behaves asymptotically.
- However we only have a very limited theoretical toolset to help us with this task.
- Some successes: Peixoto basically solved in 1962 the problem of characterizing the asymptotic behaviour of (C¹) systems defined over a compact K ⊆ ℝ²: the limit sets can only consist of a finite number of (hyperbolic) equilibrium points and (hyperbolic) periodic orbits.
- But also many questions: what happens for dimensions ≥ 3 ?

Computers come to the rescue

With the advent of the digital computer, numerical analysis became widely used in the study of nontrivial systems.

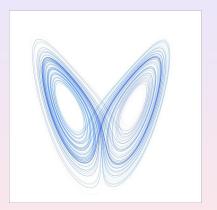
Computers come to the rescue

With the advent of the digital computer, numerical analysis became widely used in the study of nontrivial systems.

- This approach led to a new understanding of the richness of behaviours of dynamical systems.
- Most notably these computer simulations provided evidence that new types of robust attractors other than equilibria and periodic orbits could exist: the strange attractors.
- The most iconic of such attractors is the Lorenz attractor, first described by E. Lorenz in 1962.
- There is a recent series of works which show that Lorenz-like attractors are fairly typical for large classes of systems defined in \mathbb{R}^3 .

A B + A B +

The Lorenz attractor



$$\begin{cases} x' = \sigma(y - x) \\ y' = x(\rho - z) - y \\ z' = xy - \beta z \end{cases}$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Classical values for parameters: $\sigma = 10, \rho = 28, \beta = 8/3$

But is the Lorenz attractor real?

Problem (S. Smale)

Does the Lorenz attractor exist?

- Perhaps the images of Lorenz attractors are just the result of the cumulation of roundoff errors?
- Can we rigoursly prove it exist?
- This was the 14th problem of the list of 18 problems that the Fields medalist Steve Smale proposed for the 21th century (P vs NP is no. 3 on this list).

But is the Lorenz attractor real?

Problem (S. Smale)

Does the Lorenz attractor exist?

- Perhaps the images of Lorenz attractors are just the result of the cumulation of roundoff errors?
- Can we rigoursly prove it exist?
- This was the 14th problem of the list of 18 problems that the Fields medalist Steve Smale proposed for the 21th century (P vs NP is no. 3 on this list).
- This problem was solved in 2002 by W. Tucker using a combination of rigourous numerics and normal form theory.

What about computability?

- In various applications it is useful to know something about the asymptotic behaviour of a system (e.g. in verification, etc.) in an automated manner
- It is not always the case that we can compute this behaviour because often this reduces to solving the Halting problem
- But what about the case of smooth three-dimensional flows?

Question

Is the Lorenz attractor computable?

Some preliminaries

- In the late 1970s several authors suggested the use of geometrical Lorenz models to better understand the Lorenz attractor.
- Such models were assumed to have the qualitative behaviour which was numerically observed on the Lorenz system.
- It was soon shown that geometrical Lorenz models have a strange attractor with properties compatible to those observed via numerical experiments.
- W. Tucker essentially showed (using rigourous numerics and normal form theory) that the Lorenz system behaves like a geometric Lorenz model, thus supporting a strange attractor.

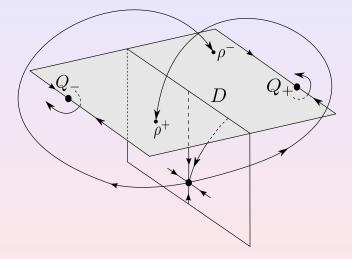
Theorem

Let ϕ be the a (C^2) flow of some Lorenz geometric system. Then:

- The global attractor A of a geometric Lorenz flow φ is computable from a (C²) name of φ.
- 2 The geometric Lorenz flow admits a physical measure which is computable from a (C²) name of φ.

The geometric Lorenz model

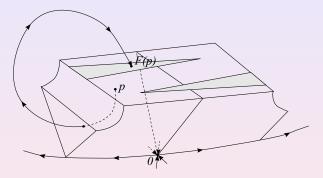
- A geometric Lorenz model has three equilibrium points: the origin, Q_{-} , and Q_{+} .
- The origin is a saddle point: its stable manifold is the yz-plane while its unstable manifold intersects the plane z = 27 from above at two points $\rho^+ = (r^-, t^-)$ and $\rho^- = (r^+, t^+)$.
- Both Q_{-} and Q_{+} lie on the plane $z = \rho 1 = 27$. Their stable lines are parallel to the *y*-axis, and the flow near these points rotates around their stable lines.
- Let Σ be a rectangle contained in the plane z = 27 such that ρ[±] is contained in Σ, the two opposite sides of Σ parallel to the y-axis pass through the equilibrium points Q₋ and Q₊, and these two sides form portions of the stable lines at Q₋ and Q₊.
- Let D be the intersection of the yz-plane and Σ .



・ロト ・ 通 ト ・ 言 ト ・ 言 ・ う へ ()・

- Σ is a cross section for the flow;
- All trajectories go downwards through Σ;
- All trajectories originating in Σ and not entering D spiral around Q₋ or Q₊ and return to Σ as time moves forward;
- All trajectories beginning at points in D tend to the origin as time moves forward and never return to Σ;
- This implies that there is a Poincaré return map $F : \Sigma_- \bigcup \Sigma_+ \to \Sigma$, where $\Sigma_- = \{(x, y) \in \Sigma | x < 0\}$ and $\Sigma_+ = \{(x, y) \in \Sigma | x > 0\}$.

• • = • • = •



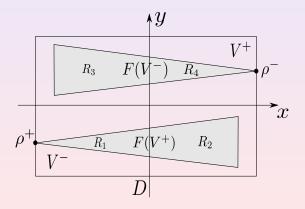
・ロト ・ 通 ト ・ 言 ト ・ 言 ・ う へ ()・

(3D picture of the Lorenz attractor)

3

・ロト ・個ト ・ヨト ・ヨト

- Let V = {(x, y)|r⁻ ≤ x ≤ r⁺, -27 ≤ y ≤ 27} (the number 27 is arbitrarily chosen; other positive numbers can be used as well);
- The Lorenz flow also has the property that all points in the interior of $\Sigma \setminus D$ have a trajectory which will eventually reach V and $F(V \setminus D) \subseteq V$. Thus we can restrict the analysis of the flow to V.



Main characteristics

- (F-1) The set \mathcal{F} , $\mathcal{F} = \{x = \text{constant}\}$, is invariant under the action of F. In other words, the x-coordinate of the image $F(x_0, y_0)$ depends only on x_0 .
- (F-2) There are functions f and g such that F can be written as

F(x,y) = (f(x),g(x,y)) for $x \neq 0$

and F(-x, -y) = -F(x, y).

- (F-3) $f'(x) > \sqrt{2}$ for $x \neq 0$ and $f'(x) \to \infty$ as $x \to 0$; $0 < f(r^+) < r^+$ and $r^- < f(r^-) < 0$ (recall that the unstable manifold of the origin first intersects V from above at points ρ^+ and ρ^-).
- (F-4) $0 < \partial g / \partial y \le c < 1/\sqrt{2}$ and $0 < \partial g / \partial x \le c$ for $x \ne 0$ and $\partial g / \partial y \rightarrow 0$ as $x \rightarrow 0$. Without loss of generality, c can be assumed to be a rational number and $\partial g / \partial y \rightarrow 0$ to be monotonic as $x \rightarrow 0$.

白マ キョン・キョン

A consequence of (F-2)-(F-4) is that:

(F-5) $\lim_{x\to 0^-} F(x, y) = (r^+, t^+)$ and $\lim_{x\to 0^+} F(x, y) = (r^-, t^-)$, where $\rho^- = (r^+, t^+)$ and $\rho^+ = (r^-, t^-)$. The symmetry property (F-2) implies that $r^- < 0 < r^+$ and $r^- = -r^+$.

Theorem

Let ϕ be the a (C^2) flow of some Lorenz geometric system. Then:

- The global attractor A of a geometric Lorenz flow φ is computable from a (C²) name of φ.
- 2 The geometric Lorenz flow admits a physical measure which is computable from a (C²) name of φ.

Let us show the computability of \mathcal{A} .

• The first step is to consider a reduced problem where we show uniform computability of $A = A \cap V$.

Proposition

The operation $(F, \rho^{\pm}) \rightarrow A$ is computable.

It can be shown that

$$A = \bigcap_{n \ge 0} \overline{F^n(V \setminus D)}$$

so we take $A_n = \overline{F^n(V \setminus D)}$ and show that:

- i) the sequence $\{A_n\}$ is computable from F and ρ^{\pm} ;
- ii) $\max_{(x,y)\in V} |d_{A_{n+1}}(x,y) d_{A_n}(x,y)| \le 108c^n$ (see (F-4) for the definition of the number c);
- iii) thus the computable sequence $\{d_{A_n}\}_{n\in\mathbb{N}}$ converges to a computable function d_A ;
- iv) since d_A is computable, then so is A

This lemma is not obvious due to the presence of the "singularity" line D where the return map is not defined.

□ > < E > < E > _ E

Lemma

Let ϕ be the flow of some Lorenz geometric system. Then we can uniformly compute from a (C^2) name of ϕ :

- **1** The return function F (and its components f, g).
- 2 The return time function $r: V \setminus D \rightarrow [0, +\infty)$.
- **3** The points r^{\pm} , t^{\pm} .

This lemma + the previous proposition show that A is computable from the flow ϕ . From the planar projection A, it is not too dificult to show the computability of the (whole) attractor A.

A = A = A

Results Preliminaries

What about the Lorenz attractor

Question

Does the previous result prove computability of the (real) Lorenz attractor?

What about the Lorenz attractor

Question

Does the previous result prove computability of the (real) Lorenz attractor?

- Not yet!
- The problem has to do with the fact that we need a constructive version of Tucker's proof.
- In particular it is not enough to show that a foliation exists for the Lorenz attractor.
- We still have to show that a computable foliation of the Lorenz attractor exists which can be computably mapped into the standard foliation $\mathcal{F} = \{x = \text{constant}\}$ with the properties F1–F5.

A B A A B A

Thank you!

Geometric Lorenz attractors are computable

E