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1 Historical Background and Motivation

The work can be viewed, with the benefit of hindsight, especially because of the work by
Kechris, Pestov and Todorcevic (2005), as an interpretation of the ideas in the papers by
Blass (1987) and Coquand (1992).

In both these earlier papers, Ramsey theory plays a prominent role and they deal with
dynamical versions of Ramsey theorems and its implications for mathematical logic.

In the case of Blass, the focus is on the tension between the axiom of choice and the
Boolean Prime Ideal theorem (each locale has a point) and where he accentuated the rôle
of the symmetry aspects of traditional Ramsey theory by introducing the concepts of

Ramsey groups and Ramsey actions.
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Coquand addresses the problem of understanding the topological versions of Ramsey
theorems from the viewpoint of constructive mathematics and proposes the problem of
viewing these phenomena from a suitable point-free theory of topological dynamical sys-
tems.

Along these lines one might be able to attain a beter understanding of the algorith-
mic and algorithmically random content of the topological versions of Ramsey theorems.
An initial exploration of this was undertaken by F (2011-2012).

During 1995-1999 F wrote a sequence of papers identifying the rôle that symmetry
plays in identifying Ramsey objects in a class of finite combinatorial configurations. These
results rely heavily on the work by Nesetril and Rödl in combinatorics and by Abramsky
and Harrington in model theory.

Some aspects of these results were placed within a much broader perspective by the
paper of Kechris, Pestov and Todorcevic (2005).



4

In very broad terms they accomplished the following:

Let X be the Fräıssé limit of a Fräıssé age of a first order structure

and write G for its symmetry group and topologise it by viewing it as having the topology
induced by being a subgroup of the symmetry group S∞ of the countable set X,

the group S∞ thus having the pointwise convergence topology.

The objects in the age of X are all “Ramsey objects” (a purely combinatorial notion)
iff all topological actions of G on some compact Hausdorff space have fixed points. (In
the language of dynamical systems, this expresses the fact thatG is an extremely amenable
group.)

I looked at these results from the viewpoint of C∗-algebras in order to find a represen-
tation of topological Ramsey results in a categorically invariant manner.
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With the benefit of hindsight, one can say that a closed subgroup of S∞ is extremely
amenable iff it has the property, in the language of Blass (1987), that all transitive actions
of G on discrete spaces are “Ramsey actions”.

In this project, we discuss how we can understand these results in a categorical duality
framework and indeed within Gelfand duality and Stone duality. The idea of looking at
these results from the angle of Gelfand duality was suggested to me upon reading a paper
by Glasner and Weiss (2003) on the symmetries of the Cantor ternary set.

We show that these investigations lead to problems of independent interest especially
towards understanding hyperstonean spaces, the Gelfand duals of commutative von Neu-
mann algebras, from the viewpoint of Stone duality.

This is unexplored territory, but I have indicated that ideas from quantum logic, to
wit , Gleason’s theorem, suitably generalised, can shed some light on this problem.

We propose that the paper by Freyd (1992)

(All topoi are localic, or Why permutation models prevail)

must also shed light on these problems especially as far as the challenge, proposed by
Coquand, is concerned.
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2 A concrete example of ideas involved

If G is a Hausdorff topological group, we write Crub(G) for the commutative C∗-algebra
with an identity element based on the bounded (complex-valued) functions on G which
are right-uniformly continuous.

Thus a function f : G → C belongs to Crub(G), iff it is bounded and for every ε > 0,
there is some symmetric neighbourhood V of the identity element of G (meaning that
V = V −1), such that:

s−1t ∈ V =⇒ |f(s)− f(t)| < ε.

The Gelfand dual of Crub(G) is denoted by ΓG, which is a compact Hausdorff space.

(Thus, for example, if G is a discrete space then Crub(G), as a C∗-algebra, can be identi-
fied with `∞(G) and ΓG with β(G), the Stone-Cech compactification of G. In fact, `∞(G)
is a von Neumann-algebra which means that ΓG is in fact a “hyperstonean space”.)

We shall refer to fixed points of the action of G on ΓG as Ramsey characters.
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To motivate this terminology, let as look at the following different way of looking at
the oldest result in Ramsey theory. In a way, we present a dynamical C∗-algebraic refor-
mulation of this result.

But first we must introduce some terminology.

Let η be the Cantor order. This means it is an example of a countable model of the
first order properties of the structure (Q,≤).

Write S∞ for the symmetry group of a countably infinite set. Without loss of gener-
ality, we may assume that the countable infinite set on which S∞ acts is coded by the
natural numbers N. As such we can view S∞ as a subset of NN. We topologise NN by
imposing the discrete topology and then a product topology.
The resulting space is frequently referred to as the Baire space . We topologise S∞ via
encodings to view S∞ as embedded thus

S∞ ⊂ NN.

As such it is a closed subgroup of the Baire space NN.
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We have, writing G = Aut η, that ΓG is a Stonean space. Indeed, C∗-algebraically:

Crub(G) ' C( lim
←−

H<oG

β(G/H)) ' lim
−→

H<oG

`∞(G/H), (1)

and hence, by Gelfand duality, we have the topological homeomorphism

ΓG ' lim
←−

H<oG

β(G/H). (2)

Here H <o G means that H is an open subgroup of G and for a discrete space D , we
write β(D) for the Stone-Čech compactification of D.

The topological homeomorphisms are not G-dynamical isomorphisms.

Note that the second isomorphism in (1 ) expresses Crub(G) as a direct limit of Von
Neumann algebras.
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Let us recall the

Oldest Ramsey Theorem. (Ramsey 1932) For natural numbers r, n, k there is a
natural number N , such that for any r-colouring χ of the k-subsets of [N ] := {1, . . . , N},
there is a a n-subset A of [N ] such that χ assumes a constant value on all the k-subsets
of A.
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A case can be made for the statement that this classical finitary Ramsey theorem can
be expressed, in the context of C∗-algebras as

Theorem 1 Let Aut(η) be the topological symmetry group of the Cantor order η. Write
C for the C∗–algebra of right-uniformly continuous functions on Aut η. Then there is a
Gelfand character χ on C such that

σχ = χ,

for all σ ∈ Aut η.

In particular, G = Aut η admits a “Ramsey character” χ.
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In this project we explore, among other things, the extent to which such a Ramsey
character is “random” or could be constructively expressed.

This work is a continuation of what can be found in F (1996-1999) and (2011-).

This investigation leads us to exploring the Stonean structure of Gelfand duals of von
Neumann algebras.

We shall also relate this statement to permutation models in set theory, both within
classical set theory and Grothendieck toposes.

The envisaged goal of this project is to understand dynamical versions of Ramsey
theorems and its implications for logic in a constructive and/or effective topological and
probabilistic context.
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Following Blass , we introduce the notion of a Ramsey action. Let G be a topological
group and X a discrete space. A continuous action G×X → X, denoted by (g, x)→ gx
of G on X, is said to be a Ramsey action iff the following holds:

Let χ : X → r be any r-colouring of X. Let F be any finite set of X. Then there is
some σ ∈ G, such that χ is monochromatic on the translate σF .

Note that a Ramsey action is necessarily transitive. If not, distribute F over two
disjoint orbits of the action of G on X and give the two orbits in X different colours and
colour the other orbits arbitrarily.
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Let L be the signature of a first-order structure and let K be the age of some countable
L-structure. For A, π ∈ K we denote by Aπ the set of all the (model-theoretic) structure-
preserving embeddings of π in A.

For a natural number r ≥ 1 and for π,A,B ∈ K we introduce the predicate B  (A)πr
(a variant of the Erdős-notation) to mean:

B  (A)πr ⇐⇒
(
∀ Bπ r

χ // ∃ A B// α //
Aπ Bπα∗ //Aπ

r
! ��?
??

??
? Bπ

r
χ����

��
��

Aπ

⊕
)
.

Here α∗ : Aπ → Bπ is the mapping that takes an embedding

π A// x //

to the induced embedding

π B// αx // .

The predicate says that some fibre of each χ : Bπ → r will contain a copy of Aπ, to wit
α∗(A

π) as given by the embedding α of A into B.
In other words, in a more elementary language, B  (A)πr iff: for every r-colouring

χ of the set Bπ consisting of the embeddings of π in B (copies of π in B), there is an
embedding α of A into B such that χα∗ is a constant. This means that χ assumes a
constant value on all the embeddings of π into the image A′ = α∗(A) ⊂ B of A under α.

We shall call an age K a Ramsey age if, for all π,A ∈ K with Aπ 6= ∅, and all natural
numbers r ≥ 1, there is some B ∈ K such that B  (A)πr .
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A somewhat broader outlook:

For those who doubt the value of studying ZFA, it might be interesting to look at the
paper by Freyd (1992). I suspect these results of Freyd bring us closer to the challenge
proposed by Coquand.

Indeed, paraphrasing Freyd: A full subcategory V in a Grothendieck topos A is an
exponential variety if it is closed under the formation of subobjects, cartesian products
and power-objects.

The category V is necessarily a topos, its inclusion functor is logical and has both adjoints.

Given any object A in A, the minimal exponential variety containing A may be con-
structed as the full subcategory of all subobjects that appear in the transfinite sequence
recursively defined by

P0 = A, Pα = P (
∑
β<α

Pβ)

.

All exponential varieties so arise. V∅ is called the well-founded part of A.
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3 Why permutation models prevail: d’aprés Freyd

Theorem 2 (Freyd). There is some single Boolean topos B such that for every Grothendieck
topos A, there is a locale L in B such that A appears as an exponential variety in the
topos of L-sheaves over B.

For a topological group G, let B(G) be the category of continuous actions of G on discrete
spaces. For either G = S∞ or G = Aut(η), where η is the Cantor order, the Boolean topos
B = B(G) will meet with the requirements of Freyd’s theorem.

It is an interesting problem to characterise the topological groups G for which this will
be the case.

As Freyd pointed out, such groups will be, in more modern language, non- Archimedean
and Polish, thus necessarily isomomorphic to closed subgroups of S∞, being thus essen-
tially automorphism groups of Fräıssé limits.

He didn’t say this in these words, but work by Kechris and others, together with some
model theory, enable one to make such a statement.
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4 Summary

The discussion is based on the following observation:

Theorem 3 Let G be a Polish nonarchimedean group, i.e, isomorphic to a closed subgroup
of S∞. The following statements are equivalent:

1. With G we can build a permutation (Mostowski-Fraenkel-Specker) model of ZFA
(Zermelo-Fraenkel with Atoms) in which AC (Axiom of Choice) is false but the
ultrafilter theorem (or, in ZF, every locale has a point) is true.

2. Every transitive and continuous action of G on a discrete set X is a Ramsey action.

3. G is the automorphism group of the Fräıssé limit of a Ramsey age whose members
are rigid (having no non-trivial automorphisms).

4. The C∗-algebra Crub(G) of bounded right-uniformly continuous (complex-valued)
functions on G admits a Gelfand character χ which is G-invariant.
(We call such a character χ a Ramsey character).
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5 Random structure of Ramsey characters.

Definition 1 (F 2015) A topological group G is fecund if it contains an open subgroup
H such that (G : H) is infinite. Such an H will be called a witness to the fecundity of G.

Theorem 4 Let L be a countable first order language and T a first-order theory in L
which is complete in the sense that for each sentence φ of L exactly one of φ or ¬φ is
a first-order logical consequence of T . Suppose any two countable models of the theory T
are isomorphic, that is, we suppose that the theory T is ℵ0-categorical. Then if A is any
countable model of the theory T , the group G = Aut(A), when topologised as an embedded
subgroup of S∞, is fecund. In fact, for every n ∈ N, there will be an n-tuple a over A
such that the orbit Ga is (countably) infinite. If H is the stabiliser of such an n-tuple a,
then H is an open subgroup of G, which witnesses the fecundity of G.
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For g ∈ G, let δg : Crub(G) −→ C be the Gelfand character given by δg(f) = f(g) for
all f ∈ Cub(G). The mapping

∆ : G −→ ΓG

is given by g 7→ δg. The mapping is clearly continuous. Moreover

σ∆(g) = ∆(σg),

for all σ, g ∈ G.

Theorem 5 (F, de Beer 2015 -2017)
Let G be a Polish non-archimedean group. Then ∆ : G −→ ΓG is injective and ∆(G)

is dense in ΓG. Moreover, this mapping induces a Borel isomorphism between G and
∆(G).
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Theorem 6 (F, de Beer 2016) Let G be a fecund Polish non-Archimedean topological
group. Let ν be a probability measure on ΓG which is G-invariant. Then

ν(∆(G)) = 0.

No Ramsey character ( a fixed point of the action of G on ΓG) associated with G will be
an element of ∆(G).

This result suggests that each Ramsey character χ is in some sense “random”. It is
outside a specific set ∆(G) which is negligible with respect to any G-invariant Radon
probability measure on ΓG even though this set is dense in ΓG. Moreover ∆(G) is Borel
equivalent to G, topologically viewed and is in fact a Borel set. (Not trivial.)
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However, the following result places a restriction on this suggestion:

Theorem 7 F, de Beer, 2016-2017) Let G be a Hausdorff topological group such that ΓG
is hyperstonean. This means essentially that Crub(G) is a commutative Von Neumann
algebra. (This is, for example, the case when G is discrete.) Then there is a Radon
probability measure µ on ΓG such that µ(∆(G)) > 0. If G is moreover Polish, non-
Archimedean and fecund, such a measure will necessarily not be G-invariant.
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Towards understanding hyperstonean spaces, the following remarks might be useful:
If L is a lattice having a smallest element 0 and largest element 1 we write Q(L) for
the family of ultrafilters (maximal filters) on L. We topologise Q(L) by the topology
generated by the sets of the form Q(L)a, for some a ∈ Q(L), where Q(L)a consists all
those ultrafilters that has a as an element. When L is a Boolean algebra, then Q(L), thus
topologised, is exactly the Stone topology associated with the lattice. For this reason, we
shall refer to Q(L) as the Stone space on L.

Theorem 8 (de Groote 2005, 2011). Let R be an abelian von Neumann algebra. Let L
be the projection lattice of R. Then the Gelfand dual of R is homeomorphic to the Stone
space Q(L) .

Every hyperstonean space Γ can be viewed as a Stone space directly topologically definable
within Γ as follows:

Γ R := C(Γ) L = P (R) Q(L) ' Γ,

or
hyperstonean space Γ abelian von Neumann algebra R

 projection lattice L of R Stone space Q(L) ' Γ,

Proof: The fact that Γ is hyperstonean means exactly that R = C(Γ) is a von Neumann
algebra. Of course, Γ is the Gelfand dual of the C∗-algebra R. It follows from the result
of de Groote that this dual must be homeormorphic to Q(L) with the Stone topology,
where L is the projection lattice of R.
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A dual picture might be:

R L := P (R) Γ := Q(L) C(Γ) ' R.

or
commutative von Neumann R projection lattice L

 Stone space Γ = Q(L) R ' C(Γ).

The crucial observation here is that the Gelfand dual Γ of an abelian von Neumann
algebra R is indeed the Stone space associated with the the projection lattice associated
with R. This result is fairly recent and was first established by Hans de Groote (2005).
He gave an alternative and shorter proof in 2012 where it is deduced from the powerful
generalised Gleason theorem in quantum logic .


