
CCC 2017, Nancy Rigorous Function Calculi – 1 / 34

Rigorous Function Calculi

Pieter Collins
Department of Data Science and Knowledge Engineering

Maastricht University

pieter.collins@maastrichtuniversity.nl

Continuity, Computability, Constructivity

Nancy, 26-30 June 2017

Overview

CCC 2017, Nancy Rigorous Function Calculi – 2 / 34

• Motivation Work Package of CID.

• Real Numbers Real number calculi (review)

• Continuous Functions Calculi for continuous functions.

• Beyond Continuous Calculi for other classes of function.

• Practicalities and Open Issues

Motivation

Motivation

• Why Function Calculus?

• What is Function Calculus?

• Function Calculus in CID

Real Numbers

Function Calculus

Beyond Continuous

Practicalities

CCC 2017, Nancy Rigorous Function Calculi – 3 / 34

Why Function Calculus?

CCC 2017, Nancy Rigorous Function Calculi – 4 / 34

Many problems in applied mathematics are formulated in terms of functions:

• Trajectories and flow tubes of ordinary differential equations.

• State spaces for partial differential equations.

• Probability densities of stochastic systems.

• Feedback controllers.

• Parameterised families of solutions.

We would like to be able to work with functions in a natural, rigorous, and efficient

way!

Rigour is especially important in mathematical proofs, verification of safety-critical

systems, and long chains of reasoning.

What Do We Want In Our Function Calculus?

CCC 2017, Nancy Rigorous Function Calculi – 5 / 34

Ideally, our function calculus should have the following characteristics:

• Based on a solid mathematical theory of computation in analysis.

• Abstract types and operations for problem specification and high-level algorithms.

• Clearly-defined interfaces and semantics.

• Various concrete implementations suitable for different problems.

• Interchangability of different implementations.

• Well-documented, easy to understand and to use, versatile and efficient.

Function Calculus in CID

CCC 2017, Nancy Rigorous Function Calculi – 6 / 34

Work Package “Rigorous Function Calculi” in EU-RISE project “Computing with

Infinite Data” (CID).

Base on previous work of consortium on:

• ARIADNE (Collins, Villa et al.) tool for verification of hybrid systems (C++).

• AERN tool (Konecny et al.) fo effective real computation (Haskell).

• iRRAM package (Müller) for real number arithmetic (C++).

Look into other tools for rigorous numerics e.g.

• Cosy Infinity (Berz & Makino)

• CAPD Library (Mrozek, Zgliczynski et al.)

• IBEX (Chabert, Jaulin et al.)

Hope for imput from other consortium members

• in working on specification and implementations, and

• using package for case studies and suggesting improvements.

Real Number Calculus

Motivation

Real Numbers

• Computable Reals

• Validated Reals

• Concrete Numbers

• Abstract Reals

• Directed reals

Function Calculus

Beyond Continuous

Practicalities

CCC 2017, Nancy Rigorous Function Calculi – 7 / 34

Computable Real Numbers

CCC 2017, Nancy Rigorous Function Calculi – 8 / 34

An effective or computable description of a real number is a representation which

allows one to:

• Extract a dyadic/rational to a given accuracy, yielding a ball around the

value (Cauchy real).

• Extract arbitrarily accurate dyadic/rational lower/upper bounds (Dedekind real).

Equivalently, give a nested sequence of balls/bounds with singleton intersection.

A particularly efficient representation is the signed digit representation

• A dyadic approximation with an error of ±1 in the final (nth) place.

Note dyadic/rational balls/bounds each form a basis for the topological space R.

Suggests possible abstract operations for generic effective real numbers:

• EffectiveReal::get(Accuracy) -> Ball<Dyadic,TwoExp>;

• EffectiveReal::get(Effort) -> Bounds<Dyadic>;

Note: Use ‘Bounds’ rather than ‘Interval’ since in ARIADNE, ‘Interval’ is reserved

for sets, not a range of possible values for a single number.

Validated Real Numbers

CCC 2017, Nancy Rigorous Function Calculi – 9 / 34

Operations such as arithmetic are computable and can be implemented on these

bounds/balls defined in terms of concrete dyadic/rational numbers:

x ∈ ⌊x⌉ ∧ y ∈ ⌊y⌉ =⇒ x ⋆ y ∈ ⌊x⌉⋆̂⌊y⌉.

Once we have extracted bounds for a number, there is no way back to an

arbitrarily-accurate approximation! Information has been lost.

Since there are many different possible representations of bounds for a real

number, introduce a generic validated real number type.

Suggests different signature for obtaining bounded approximations:

• EffectiveReal::get(Effort) -> ValidatedReal;

Also introduce approximate real numbers for which we can compute concrete

approximations without any guarantees on the accuracy (useful for preconditioning).

Concrete Real Numbers

CCC 2017, Nancy Rigorous Function Calculi – 10 / 34

As well as dyadic and rational numbers, can instead work with:

• Single- and double- precision floating-point numbers, with a fixed finite accuracy.

• Multiple-precision floating-point numbers, which are graded by their precision.

Floating-point (and fixed-point) numbers support concrete, efficient computation

via rounded arithmetic.

Work in practice with concrete double- or multiple-precision floating-point

numbers:

• Effective/ValidatedReal::get(DoublePrecision) -> FloatDPBounds;

• Effective/ValidatedReal::get(MultiplePrecision) -> FloatMPBounds;

Validated/Concrete Real Numbers

CCC 2017, Nancy Rigorous Function Calculi – 11 / 34

A generic validated real number is an object for which we can extract bounds, but

not necessarily arbitrarily accurately.

e.g. [14 :
1
3] is a validated real, but we can’t extract canonical dyadic bounds.

e.g. sin
(

[14 :
1
3]
)

is a validated real, but which algorithm and how much effort

should we use to compute the sine function?

Both degree of Taylor series and precision of numerical type control accuracy of

computation here.

Potential solution: Validated real numbers should store the algorithms and effort

used to compute them.

Abstract Real Numbers

CCC 2017, Nancy Rigorous Function Calculi – 12 / 34

In practise, often define real numbers by formulae: e.g. x = 6× atan(1÷
√
3).

Real numbers may also be defined by complicated operators e.g. solutions of

algebraic/differential equations or optimisation problems:

e.g. x = maxt∈[0,8] ξ(t) where ξ̈(t)+1
5ξ(t)+sin(ξ(t)) = cos(t); ξ(0) = ξ̇(0) = 0.

There are many ways of implementing the operations (÷,
√· etc.) used.

Especially for more complicated operations, such as the flow of a differential

equation, the choice of algorithm may be critical to efficient calculuation.

Introduce abstract real numbers defined by formulae without giving a

computational meaning.

Need to give algorithms to obtain an effective real from an abstract formula:

• ElementaryRealCalculus::atan(FloatMPBounds) -> FloatMPBounds;

• EffectiveReal(ElementaryReal, ElementaryRealCalculus);

Group common operations (e.g. elementary functions) into a calculus for a class

of formulae.

Directed Real Numbers

CCC 2017, Nancy Rigorous Function Calculi – 13 / 34

Also useful to work with lower reals R< and upper reals R>.

Defined respectively by increasing and decreasing sequences.

May also consider naive reals R? defined by convergent sequences.

Since multiplication on directed reals R≶ is not computable, also useful to

consider type of positive (lower/upper) reals R+, R+
≶ .

Euclidean Function Calculus

Motivation

Real Numbers

Function Calculus

• Continuous Functions

• Bounded Domains

• Bounded Domains

• Differentiation

• Mixed operations

Beyond Continuous

Practicalities

CCC 2017, Nancy Rigorous Function Calculi – 14 / 34

Continuous/Effective Real Functions

CCC 2017, Nancy Rigorous Function Calculi – 15 / 34

Continuous real functions f are defined by evaluation R → R.

In practise, this means an interval extension f̂ such that

x ∈ x̂ =⇒ f(x) ∈ f̂(x̂) and
⋂

n x̂n = {x} =⇒
⋂

n f̂(x̂n) = {f(x)}.
Intervals could be either dyadic or multiple-precision bounds.

Distinguish abstract functions e.g. f(x) = exp(x) with an effective

implementation:

e.g. expn(x) =
n
∑

k=0

xk

k!
± |x|n+1

n!
for |x| 6 n/2.

Effective real functions allow evaluation to arbitrary accuracy, while validated

functions allow evaluation to bounded accuracy.

Since both can be defined by interval extensions, there is a natural embedding of

effective real functions into validated real functions.

Operations on real functions

CCC 2017, Nancy Rigorous Function Calculi – 16 / 34

Continuous functions are defined by:

• Evaluation ε(f, x) = f(x).

Combining evaluations yields:

• Composition [f ◦ g](x) = f(g(x)).

Any operations on reals can be defined in a pointwise way:

• [op(f1, f2)](x) = op(f1(x), f2(x))

Indeed, continuous functions are a unital algebra supporting:

• Constant f(x) = c.

• Coordinate f(x) = x.

• Addition [f + g](x) = f(x) + g(x).

• Multiplication [f × g](x) = f(x)× g(x).

Other operations related to integral algebra

• Integral
∫ x
a f(ξ) dξ.

Real Functions on Bounded Domains

CCC 2017, Nancy Rigorous Function Calculi – 17 / 34

Continuous real functions on compact domains D have a natural metric defined

by the uniform norm

dD(f1, f2) = ‖f1 − f2‖∞,D = max
x∈D

|f1(x)− f2(x)|.

Use to define bases of validated real functions based on balls.

e.g. around polynomials with dyadic/floating-point coefficients.

B(D, p, e) = {f : D → R | ‖f − p‖∞,D 6 e} = p± e.

Continuous function patches in the uniform norm are a unital Banach algebra

supporting:

• Norm ‖f‖ = maxx∈[a,b] |f(x)|.
• Analytic f(x) =

∑

∞

k=0 ckx
k with error e(n, r).

Define functions over larger sets by forming a quilt of function patches with box

domains.

Polynomial function calculus

CCC 2017, Nancy Rigorous Function Calculi – 18 / 34

Taylor function calculus of Berz & Makino used scaled interval domains

T ([a, b], p, e) = p ◦ s−1 ± e

:= {f : [a, b] → R | maxz∈[−1,+1] |f(s(z))− p(z)| 6 e

where p(z) =
∑n

k=0 ckz
k and s : [−1,+1] → [a, b]}.

Scaled domains allow easy sweeping of small terms into the error:
∑n

k=0 ckz
k ± e ⊂ ∑n−1

k=0 ckz
k ± (e+ |cn|).

Roundoff errors are also swept into the error term.

Other bases are possible

e.g. Chebyshev basis Tk(x) = 2xTk−1(x)− Tk−2(x) = cos(k acos(x)).

Require formulae for products Tk1(x)× Tk2(x)

Differentiation

CCC 2017, Nancy Rigorous Function Calculi – 19 / 34

Differentiation is uncomputable!

Given f(x) = p(x)± e on [a, b] with c = a+b
2 , define a weak derivative

g(x) = q(x)± d such that

maxx∈[a,b]
∣

∣p(x)−
∫ x
c q(ξ) dξ

∣

∣ 6 d− e.

This is sufficient for solving algebraic equations using the interval Newton

operator.

Define a type of differentiable functions

C1(R) = {(f, f ′) ∈ C(R)× C(R) | f(x) = f(0) +
∫ x
0 f(ξ) dξ}

= {f ∈ C(R) | (f0, f ′) ∈ R× C(R) | f(x) = f0 +
∫ x
0 f(ξ) dξ}.

Concrete representations by approximating function p with respect to the

seminorms |f(0)| and ‖f ′‖∞.

Given seminorms ‖ · ‖j for j = 0, 1, . . . ,m, can define

B(p, e0, e1, . . . , em) = {f : D → R | ∀j, ‖f − p‖j 6 ej}.

Solvers

CCC 2017, Nancy Rigorous Function Calculi – 20 / 34

Implement complex abstract operations by solvers:

• solve : (f,D) 7→ x : D : f(x, γ(x)) = 0.

• implicit : (f,D,C) 7→ γ : D → C : f(x, γ(x)) = 0.

• flow : (f,D, T) 7→ φ : D× T → Rn : φ(x, 0) = x, φ̇(x, t) = f(φ(x, t)).

• sup : (f,D,C) 7→ µ : D → Rm : µ(x) = sup{f(x, y) | y ∈ C}.

Solvers are a generic interface to a calculus for a single operation.

Mixed operations

CCC 2017, Nancy Rigorous Function Calculi – 21 / 34

Mixed operations pose problems, since for ease-of-use we wish to allow them, but

need sensible rules for the type of the result and how to perform the calculation.

Mixed operations with equivalent arguments (+,max etc) should obey the following:

• Always have the information of the weakest argument

e.g. Abstract × Validated → Validated.

• Mixed generic and concrete arguments yield a concrete value with

properties of the concrete argument.

• May fail if arguments are concrete with different types.

Prefer to use least accurate precision settings since errors are usually dominated

by the least-precisely computed argument, and ’gaining’ information should be explicit.

Mixed operations with non-equivalent arguements should:

• Use a value with the type of a when evaluating f(a).

• Obtain properties from the most complicated type e.g. from the function in f + c.

111

Example: Hybrid system verification

CCC 2017, Nancy Rigorous Function Calculi – 22 / 34

A dynamic system with continuous evolution ẋ = f(x) until guard condition

g(x) > 0 is satisfied, when the state is reset to x′ = r(x).

Intitial set X0 = {x ∈ D =
∏n

i=1[ai, bi] | h(x) ∈ C}.
Safe set S = {x ∈ Rn | k(x) 6 0}.
Reachable set transition at time τ1(x) and time t2
R(t) = {φ2(t− t2, r2(φ1(t2 − τ1(x0), r1(φ0(τ1(x0), x0))))) | x0 ∈ X0

| g1(φ(x0, τ(x0))) = 0 ∧ g2(φ1(t2 − τ1(x0), r1(φ0(τ1(x0), x0)))) = 0}.
Represent using constrained image sets defined in terms of functions and boxes.

Safe on time interval [t0, tf] if

0 >max{k(φ2(t− t2, r2(φ1(t2 − τ1(x0), r1(φ0(τ1(x0), x0))))))

| x0 ∈ D, t2, t ∈ [0, tf] | h(x0) ∈ C ∧ g1(φ(x0, τ(x0))) = 0

∧ g2(φ1(t2 − τ1(x0), r1(φ0(τ1(x0), x0))))) = 0}.

Beyond Continuous Functions

Motivation

Real Numbers

Function Calculus

Beyond Continuous

• Piecewise

• Integrable

• Fourier

• Sobolev

• Splines

• Measurable

Practicalities

CCC 2017, Nancy Rigorous Function Calculi – 23 / 34

Piecewise-Continuous Functions

CCC 2017, Nancy Rigorous Function Calculi – 24 / 34

Piecewise-continuous functions

f(x) =

{

f+(x) if g(x) & 0;

f−(x) if g(x) . 0.

Upper-semicontinuous set-based evaluation

f(x) = {f+(x), f−(x)} if g(x) = 0.

Used to define switching systems which may require Filippov solutions

ẋ ∈ conv{f+(x), f−(x)} if g(x) = 0.

Important in control synthesis problems requiring bang-bang controllers.

Special case of piecewise-constant functions may be useful for describing

measurable functions.

Integrable Functions

CCC 2017, Nancy Rigorous Function Calculi – 25 / 34

Integrable functions can be defined as the effective (Cauchy) completion of

piecewise-constant functions or of polynomials under the p norms

‖f‖p,D =
(∫

D f(x)p dx
)1/p

.

Integrable functions do not support evaluation!

Fourier Basis

CCC 2017, Nancy Rigorous Function Calculi – 26 / 34

Fourier basis of trigonometric functions on [−π,+π]

cos(kx) + i sin(kx) = exp(ikx).

Products are defined by

exp(ik1x)× exp(ik2x) = exp
(

i(k1 + k2)x
)

The L2-norm is equivalant to the l2-norm on the sequence of coefficients:
∥

∥

∑

∞

k=0 ck exp(ikx)‖2 =
(

2π|c0|2 + π
∑

∞

k=1 |ck|2
)1/2

Use in Galerkin methods for reaction-diffusion equations)

u,t(t, x) = u,xx(t, x) + f(u(t, x)).

Rather than use norms, may control the tail coefficients (Day, Junge &

Mischaikow, 2004)

E(p, n, e) = {f(x) =
∑

∞

k=n ck exp(ikx) | |ck| 6 e/kp}.

Sobolev spaces

CCC 2017, Nancy Rigorous Function Calculi – 27 / 34

Sobolev-spaces W k,p of functions whose k-th derivative is p-integrable.

Since differentiation is not computable, need to define in terms of the k-th (partial)

derivative(s).

Use seminorms ‖∂αf‖p where

∂αf(x) =
∂|α|f(x)

∂x1
α1 · · · ∂xn

αn

to define sets

{f | ‖∂αf − ∂αq‖p 6 eα for |α| 6 k}.

Sobolev spaces are natural spaces of solutions for many partial differential

equations.

Splines

CCC 2017, Nancy Rigorous Function Calculi – 28 / 34

Spline functions or piecewise-polynomials may be useful for rigorous

finite-element methods for partial differential equations.

Measurable functions

CCC 2017, Nancy Rigorous Function Calculi – 29 / 34

Measurable functions are defined as the effective completion piecewise-constant

or polynomial functions under the Fan metric

d(f1, f2) = sup
{

ε ∈ Q+ | µ
(

{x ∈ D | d(f1(x), f2(x)) > ε}
)

> ε
}

= inf
{

ε ∈ Q+ | µ
(

{x ∈ D | d(f1(x), f2(x)) > ε}
)

< ε
}

.

Measurable functions also do not support evaluation.

Useful to define probability distributions for stochastic systems.

Practicalities and Open Issues

Motivation

Real Numbers

Function Calculus

Beyond Continuous

Practicalities

• Implementation

• Questions

• Conclusions

CCC 2017, Nancy Rigorous Function Calculi – 30 / 34

Implementation platforms

CCC 2017, Nancy Rigorous Function Calculi – 31 / 34

Aim to provide abstract concepts which can be implemented in different

languages.

• A mathematically natural approach should translate well to different languages.

• Important language features for an implementation include operator

overloading and related types.

Functional languages seem a natural choice for a function calculus.

• Use AERN (Konecny et al.) as a basis for a Haskell implementation.

• Consider an ML or Scala implementation.

Object-oriented languages faciliate abstract interfaces with different concrete

implementations.

• Use ARIADNE as a basis for a C++ implementation.

Modern C++ allows a functional programming style.

Difficulties and Questions

CCC 2017, Nancy Rigorous Function Calculi – 32 / 34

How best to specify how computations should be done, keeping both ease-of-use

and flexibility?

What are the difference between generic Validated objects, mathematically

clean representations such as DyadicBounds, and computationally efficient

descriptions such as FloatMPBounds?

How to specify the accuracy of validated computations? Extract using Effort?

Which Effort to use when getting a number to a given Precision?

Should operations with mixed arguments defaults to lowest or highest precision?

Conclusions

CCC 2017, Nancy Rigorous Function Calculi – 33 / 34

Aim to develop a rigorous calculi of real functions similar to interval arithmetic for

real numbers.

Base on computable analysis to define mathemtical types.

Allow for a variety of interchangable implementations for different applications.

Provide a basic language-independent framework with implementations in C++

and Haskell and

Aim for a collaborative effort within CID: Every participant is welcome to contribute!

Make suggestions, requests features, work on specification, implementation, and

documentation, and use in case studies!

That’s all, folks!

Motivation

Real Numbers

Function Calculus

Beyond Continuous

Practicalities

CCC 2017, Nancy Rigorous Function Calculi – 34 / 34

	Overview
	Motivation
	Why Function Calculus?
	What Do We Want In Our Function Calculus?
	Function Calculus in CID

	Real Number Calculus
	Computable Real Numbers
	Validated Real Numbers
	Concrete Real Numbers
	Validated/Concrete Real Numbers
	Abstract Real Numbers
	Directed Real Numbers

	Euclidean Function Calculus
	Continuous/Effective Real Functions
	Operations on real functions
	Real Functions on Bounded Domains
	Polynomial function calculus
	Differentiation
	Solvers
	Mixed operations
	Example: Hybrid system verification

	Beyond Continuous Functions
	Piecewise-Continuous Functions
	Integrable Functions
	Fourier Basis
	Sobolev spaces
	Splines
	Measurable functions

	Practicalities and Open Issues
	Implementation platforms
	Difficulties and Questions
	Conclusions

	That's all, folks!

