# $\sigma$ -locales and Booleanization in Formal Topology

#### Francesco Ciraulo





#### CCC2017

26-30 June 2017 Inria-LORIA, Nancy, France, EU, planet Earth, Solar system, Milky Way . . .



## $\sigma$ -frames and $\sigma$ -locales

(see Alex Simpson's talk)

#### A $\sigma$ -frame is a poset with:

- <u>countable</u> joins (including the empty join)
- and finite meets (including the empty meet)

in which binary meets distribute over countable joins.

 $\sigma \mathbf{Loc} = \mathrm{category} \ \mathrm{of} \ \sigma$ -frames and the opposite of  $\sigma$ -frame homomorphisms

## $\sigma$ -frames and $\sigma$ -locales

(see Alex Simpson's talk)

#### A $\sigma$ -frame is a poset with:

- countable joins (including the empty join)
- and finite meets (including the empty meet)

in which binary meets distribute over countable joins.

 $\sigma \mathbf{Loc} = \mathrm{category}$  of  $\sigma$ -frames and the opposite of  $\sigma$ -frame homomorphisms

#### Aim of this talk:

to prove some facts about  $\sigma$ -frames

in a constructive and predicative framework, namely Formal Topology, (which can be formalized in the Minimalist Foundation + 4C.)

(which can be formalized in the Minimalist Foundation +  $AC_{\omega}$ ).

## But, what is a <u>countable</u> set? (constructively)

Some classically equivalent definitions for a set S:

- *S* is either (empty or) finite or countably infinite;
- *S* is either empty or enumerable;
- Either  $S = \emptyset$  or there exists  $\mathbb{N} \twoheadrightarrow S$  (onto).
- ...

## But, what is a countable set? (constructively)

Some classically equivalent definitions for a set S:

- *S* is either (empty or) finite or countably infinite;
- S is either empty or enumerable;
- Either  $S = \emptyset$  or there exists  $\mathbb{N} \twoheadrightarrow S$  (onto).
- ...

#### Definition

S is countable if there exists  $\mathbb{N} \to 1+S$  with S contained in the image (see literature on Synthetic Topology: Andrej Bauer, Davorin Lešnik).

S is countable  $\iff$  there exists  $D \twoheadrightarrow S$  with  $D \subseteq \mathbb{N}$  detachable (see Bridges-Richman *Varieties.* . . 1987).

## The set of countable subsets

Given a set S, we write  $\mathcal{P}_{\omega_1}(S)$  for the set of countable subsets of S.

$$\mathcal{P}_{\omega_1}(S) \quad \cong \quad (1+S)^{\mathbb{N}}/\sim$$

where  $f \sim g$  means  $S \cap f[\mathbb{N}] = S \cap g[\mathbb{N}]$ .

## The set of countable subsets

Given a set S, we write  $\mathcal{P}_{\omega_1}(S)$  for the set of countable subsets of S.

$$\mathcal{P}_{\omega_1}(S) \cong (1+S)^{\mathbb{N}}/\sim$$

where  $f \sim g$  means  $S \cap f[\mathbb{N}] = S \cap g[\mathbb{N}]$ .

## Some properties of $\mathcal{P}_{\omega_1}(S)$

- $\mathcal{P}_{\omega_1}(S)$  is closed under countable joins  $(AC_{\omega})$ .
- If equality in S is decidable, then  $\mathcal{P}_{\omega_1}(S)$  is a  $\sigma$ -frame.
- ullet  $\mathcal{P}_{\omega_1}(1)=$  "open" truth values (Rosolini's dominance)
  - = free  $\sigma$ -frame on no generators
  - = terminal  $\sigma$ -locale.

## $\sigma$ -locales in Formal Topology

Let L be a  $\sigma$ -locale.

For  $a \in L$  and  $U \subseteq L$  define

$$a \lhd_L U \quad \stackrel{def}{\Longleftrightarrow} \quad a \leq \bigvee W \text{ for some countable } W \subseteq U.$$

 $\lhd_L$  is a **cover relation** (Formal Topology), that is,

$$\frac{a \in U}{a \lhd U} \qquad \frac{a \lhd U \quad \forall b \in U.b \lhd V}{a \lhd V} \qquad \frac{a \lhd U}{a \land c \lhd \{b \land c \mid b \in U\}} \qquad \frac{a \lhd \{T\}}{a \lhd \{T\}}$$

## $\sigma$ -locales in Formal Topology

Let L be a  $\sigma$ -locale.

For  $a \in L$  and  $U \subseteq L$  define

$$a \lhd_L U \quad \stackrel{def}{\Longleftrightarrow} \quad a \leq \bigvee W \text{ for some countable } W \subseteq U.$$

 $\lhd_L$  is a **cover relation** (Formal Topology), that is,

$$\frac{a \in U}{a \lhd U} \qquad \frac{a \lhd U \quad \forall b \in U.b \lhd V}{a \lhd V} \qquad \frac{a \lhd U}{a \land c \lhd \{b \land c \mid b \in U\}} \qquad \frac{a \lhd \{T\}}{a \lhd \{T\}}$$

## Proposition

 $(L, \lhd_L, \land, \top)$  is (a predicative presentation of) the <u>free frame</u> over the  $\sigma$ -frame L.

(cf. Banashewski, The frame envelope of a  $\sigma$ -frame, and Madden, k-frames)

## Lindelöf elements in a frame

An element a of a frame F is **Lindelöf** if for every  $U \subseteq F$ 

$$a \leq \bigvee U \implies a \leq \bigvee W$$
 for some countable  $W \subseteq U$ .

Lindelöf elements are closed under countable joins (not under finite meets, in general).

## Lindelöf elements in a frame

An element a of a frame F is **Lindelöf** if for every  $U \subseteq F$ 

$$a \leq \bigvee U \quad \Longrightarrow \quad a \leq \bigvee W \text{ for some countable } W \subseteq U.$$

Lindelöf elements are closed under countable joins (not under finite meets, in general).

#### $\sigma$ -coherent frame =

- Lindelöf elements are closed under finite meets (and hence they form a  $\sigma$ -frame), and
- every element is a (non necessarily countable) join of Lindelöf elements.

## $\sigma$ -coherent formal topologies

 $\sigma$ -coherent frames can be presented as formal topologies  $(S, \lhd, \land, \top)$  where

 $a \triangleleft U \implies a \triangleleft W$  for some countable  $W \subseteq U$ 

## $\sigma$ -coherent formal topologies

 $\sigma$ -coherent frames can be presented as formal topologies  $(S, \lhd, \land, \top)$  where

$$a \triangleleft U \implies a \triangleleft W$$
 for some countable  $W \subseteq U$ 

## Proposition

Given a  $\sigma$ -locale L,

 $(L, \lhd_L, \land, \top)$  is  $\sigma$ -coherent and

its  $\sigma$ -frame of Lindelöf elements is L

So  $\sigma\text{-locales}$  can be seen as  $\sigma\text{-coherent}$  formal topologies

(with a suitable notion of morphism).

## Examples

#### Examples of $\sigma$ -coherent formal topologies:

point-free versions of

- ullet Cantor space  $2^{\mathbb{N}}$
- $\bullet$  Baire space  $\mathbb{N}^\mathbb{N}$
- $S^{\mathbb{N}}$  with S countable.

So their Lindelöf elements provide examples of  $\underline{\sigma}$ -locales.

#### Dense sublocales

A congruence  $\sim$  on a frame  $\it L$  is an equivalence relation compatible with finite meets and arbitrary joins.

The quotient frame  $|L/\sim|$  is a sublocale of L.

#### Dense sublocales

A congruence  $\sim$  on a frame L is an equivalence relation compatible with finite meets and arbitrary joins.

The quotient frame  $L/\sim$  is a sublocale of L.

$$L/\sim$$
 is **dense** if  $(\forall x \in L)(x \sim 0 \Rightarrow x = 0)$ 

#### Some well-known fact about dense sublocales:

- the "intersection" of dense sublocales is always dense (!), hence
- every locale contains a smallest dense sublocale
- which turns out to be a complete Boolean algebra ("Booleanization");
- the corresponding congruence  $x \sim y$  is  $\forall z (y \land z = 0 \Longleftrightarrow x \land z = 0)$

## Boolean locales are good but...

- non-trivial discrete locales are never Boolean
- Boolean locales have no points
- non-trivial Boolean locales are never overt

unless your logic is classical!

Recall that  $(S, \lhd)$  is **overt** if there exists a predicate *Pos* such that

$$\frac{Pos(a) \quad a \lhd U}{\exists b \in U.Pos(b)} \qquad \frac{a \lhd U}{a \lhd \{b \in U \mid Pos(b)\}}$$

INTUITION: Pos(a) is a positive way to say " $a \neq 0$ ".

## A positive alternative to Booleanization

Given  $(S, \triangleleft, Pos)$ , the formula

$$\forall z [Pos(x \land z) \Leftrightarrow Pos(y \land z)]$$

defines a congruence, hence a sublocale, with the following properties:

- it is the smallest *strongly* dense sublocale (as defined by Johnstone);
- it is overt;
- it can be discrete (e. g. when the given topology is discrete).

These are precisely Sambin's overlap algebras.

A similar construction applies to  $\sigma$ -locales. . .

#### $\sigma$ -sublocales

A congruence  $\sim$  on a  $\sigma$ -frame L is an equivalence relation compatible with finite meets and countable joins.

The quotient  $\sigma$ -frame  $L/\sim |is|$  is a  $\sigma$ -sublocate of L.

$$L/\sim$$
 is **dense** if  $(\forall x \in L)(x \sim 0 \Rightarrow x = 0)$ 

We call a  $\sigma$ -locale **overt** if its corresponding ( $\sigma$ -coherent) formal topology is overt.

## The smallest strongly-dense $\sigma$ -sublocale

## Proposition

Given an overt  $\sigma$ -locale L, the formula  $\forall z [Pos(x \land z) \Leftrightarrow Pos(y \land z)]$ defines the smallest strongly-dense  $\sigma$ -sublocale of L.

CLASSICALLY: these are Madden's *d-reduced*  $\sigma$ -frames. CONSTRUCTIVELY: they are  $\sigma$  versions of overlap algebras.

## The smallest strongly-dense $\sigma$ -sublocale

## Proposition

Given an overt  $\sigma$ -locale L, the formula  $\forall z[Pos(x \land z) \Leftrightarrow Pos(y \land z)]$  defines the smallest strongly-dense  $\sigma$ -sublocale of L.

CLASSICALLY: these are Madden's *d-reduced*  $\sigma$ -frames. CONSTRUCTIVELY: they are  $\sigma$  versions of overlap algebras.

#### Proposition

A  $\sigma$ -locale L is a  $\sigma$ -overlap-algebra if and only if its corresponding ( $\sigma$ -coherent) formal topology is an overlap algebra.

CLASSICAL reading: L is d-reduced (Madden) if and only if the free frame over L is a complete Boolean algebra.

## References

- B. Banaschewski, The frame envelope of a  $\sigma$ -frame, Quaestiones Mathematicae (1993).
- F. C., Overlap Algebras as Almost Discrete Locales, submitted (available on arXiv).
- F. C. and G. Sambin, The overlap algebra of regular opens, J. Pure Appl. Algebra (2010).
- F. C. and M. E. Maietti and P. Toto, *Constructive version of Boolean algebra*, Logic Journal of the IGPL (2012).
- J. J. Madden, k-frames, J. Pure Appl. Algebra (1991).
- M. E. Maietti, A minimalist two-level foundation for constructive mathematics, APAL (2009).
- M. E. Maietti and G. Sambin, Toward a minimalist foundation for constructive mathematics, (2005).
- A. Simpson, Measure, randomness and sublocales, Ann. Pure Appl. Logic (2012).

#### References

- B. Banaschewski, The frame envelope of a  $\sigma$ -frame, Quaestiones Mathematicae (1993).
- F. C., Overlap Algebras as Almost Discrete Locales, submitted (available on arXiv).
- F. C. and G. Sambin, The overlap algebra of regular opens, J. Pure Appl. Algebra (2010).
- F. C. and M. E. Maietti and P. Toto, *Constructive version of Boolean algebra*, Logic Journal of the IGPL (2012).
- J. J. Madden, k-frames, J. Pure Appl. Algebra (1991).
- M. E. Maietti, A minimalist two-level foundation for constructive mathematics, APAL (2009).
- M. E. Maietti and G. Sambin, Toward a minimalist foundation for constructive mathematics, (2005).
- A. Simpson, Measure, randomness and sublocales, Ann. Pure Appl. Logic (2012).

## Merci beaucoup!