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σ-frames and σ-locales
(see Alex Simpson’s talk)

A σ-frame is a poset with:

countable joins (including the empty join)

and finite meets (including the empty meet)

in which binary meets distribute over countable joins.

σLoc = category of σ-frames and the opposite of σ-frame homomorphisms

Aim of this talk:
to prove some facts about σ-frames

in a constructive and predicative framework, namely Formal Topology,

(which can be formalized in the Minimalist Foundation + ACω).
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But, what is a countable set? (constructively)

Some classically equivalent definitions for a set S :

S is either (empty or) finite or countably infinite;

S is either empty or enumerable;

Either S = ∅ or there exists N� S (onto).

. . .

Definition
S is countable if there exists N → 1 + S with S contained in the image

(see literature on Synthetic Topology: Andrej Bauer, Davorin Lešnik).

S is countable ⇐⇒ there exists D � S with D ⊆ N detachable
(see Bridges-Richman Varieties. . . 1987).
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The set of countable subsets

Given a set S , we write Pω1 (S) for the set of countable subsets of S .

Pω1 (S) ∼= (1 + S)N/ ∼

where f ∼ g means S ∩ f [N] = S ∩ g [N].

Some properties of Pω1(S)

Pω1 (S) is closed under countable joins (ACω).

If equality in S is decidable, then Pω1 (S) is a σ-frame.

Pω1 (1) = “open” truth values (Rosolini’s dominance)

= free σ-frame on no generators

= terminal σ-locale.
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σ-locales in Formal Topology

Let L be a σ-locale.

For a ∈ L and U ⊆ L define

aCL U
def⇐⇒ a ≤

∨
W for some countable W ⊆ U.

CL is a cover relation (Formal Topology), that is,

a ∈ U
aC U

aC U ∀b ∈ U.b C V
aC V

aC U
a ∧ c C {b ∧ c | b ∈ U} aC {>}

Proposition

(L,CL,∧,>) is (a predicative presentation of) the free frame over the σ-frame L.

(cf. Banashewski, The frame envelope of a σ-frame, and Madden, k-frames)
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Lindelöf elements in a frame

An element a of a frame F is Lindelöf if for every U ⊆ F

a ≤
∨

U =⇒ a ≤
∨

W for some countable W ⊆ U.

Lindelöf elements are closed under countable joins (not under finite meets, in general).

σ-coherent frame =
Lindelöf elements are closed under finite meets

(and hence they form a σ-frame), and

every element is a (non necessarily countable) join of Lindelöf elements.
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σ-coherent formal topologies

σ-coherent frames can be presented as formal topologies (S ,C,∧,>) where

aC U =⇒ aCW for some countable W ⊆ U

Proposition

Given a σ-locale L,

(L,CL,∧,>) is σ-coherent and

its σ-frame of Lindelöf elements is L

So σ-locales can be seen as σ-coherent formal topologies
(with a suitable notion of morphism).

Francesco Ciraulo (Padua) σ-FormalTopology CCC2017 - Nancy 7 / 14



σ-coherent formal topologies

σ-coherent frames can be presented as formal topologies (S ,C,∧,>) where

aC U =⇒ aCW for some countable W ⊆ U

Proposition

Given a σ-locale L,

(L,CL,∧,>) is σ-coherent and

its σ-frame of Lindelöf elements is L

So σ-locales can be seen as σ-coherent formal topologies
(with a suitable notion of morphism).

Francesco Ciraulo (Padua) σ-FormalTopology CCC2017 - Nancy 7 / 14



Examples

Examples of σ-coherent formal topologies:

point-free versions of

Cantor space 2N

Baire space NN

SN with S countable.

So their Lindelöf elements provide examples of σ-locales.
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Dense sublocales

A congruence ∼ on a frame L is
an equivalence relation compatible with finite meets and arbitrary joins.

The quotient frame L/ ∼ is a sublocale of L.

L/ ∼ is dense if (∀x ∈ L)(x ∼ 0 ⇒ x = 0)

Some well-known fact about dense sublocales:

the “intersection” of dense sublocales is always dense (!), hence

every locale contains a smallest dense sublocale

which turns out to be a complete Boolean algebra (“Booleanization”);

the corresponding congruence x ∼ y is ∀z(y ∧ z = 0⇐⇒ x ∧ z = 0)
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Boolean locales are good but. . .

non-trivial discrete locales are never Boolean

Boolean locales have no points

non-trivial Boolean locales are never overt

unless your logic is classical!

Recall that (S ,C) is overt if there exists a predicate Pos such that

Pos(a) aC U

∃b ∈ U.Pos(b)
aC U

aC {b ∈ U | Pos(b)}

INTUITION: Pos(a) is a positive way to say “a 6= 0”.

Francesco Ciraulo (Padua) σ-FormalTopology CCC2017 - Nancy 10 / 14



A positive alternative to Booleanization

Given (S ,C,Pos), the formula

∀z [Pos(x ∧ z)⇔ Pos(y ∧ z)]

defines a congruence, hence a sublocale, with the following properties:

it is the smallest strongly dense sublocale (as defined by Johnstone);

it is overt;

it can be discrete (e. g. when the given topology is discrete).

These are precisely Sambin’s overlap algebras.

A similar construction applies to σ-locales. . .
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σ-sublocales

A congruence ∼ on a σ-frame L is
an equivalence relation compatible with finite meets and countable joins.

The quotient σ-frame L/ ∼ is a σ-sublocale of L.

L/ ∼ is dense if (∀x ∈ L)(x ∼ 0 ⇒ x = 0)

We call a σ-locale overt if its corresponding (σ-coherent) formal topology is overt.
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The smallest strongly-dense σ-sublocale

Proposition

Given an overt σ-locale L, the formula ∀z [Pos(x ∧ z)⇔ Pos(y ∧ z)] defines

the smallest strongly-dense σ-sublocale of L.

CLASSICALLY: these are Madden’s d-reduced σ-frames.
CONSTRUCTIVELY: they are σ versions of overlap algebras.

Proposition

A σ-locale L is a σ-overlap-algebra if and only if its corresponding (σ-coherent)
formal topology is an overlap algebra.

CLASSICAL reading: L is d-reduced (Madden) if and only if the free frame over L
is a complete Boolean algebra.
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