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Geometric Lorenz attractors are computable . . . . . . . . . . . . . 17
Daniel Graça, Cristobal Rojas and Ning Zhong

A Variant of EQU in which Open and Closed Subspaces are
Complementary without Excluded Middle . . . . . . . . . . . . 19
Reinhold Heckmann

Duality of upper and lower powerlocales on locally compact locales 22
Tatsuji Kawai

1



Average case complexity for Hamiltonian dynamical systems . . 23
Akitoshi Kawamura, Holger Thies and Martin Ziegler

The Perfect Tree Theorem and Open Determinacy . . . . . . . . . 26
Takayuki Kihara and Arno Pauly

Towards Certified Algorithms for Exact Real Arithmetic . . . . . 28
Sunyoung Kim, Sewon Park, Gyesik Lee and Martin Ziegler

Decidability in Symbolic-Heap System with Arithmetic and Ar-
rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Daisuke Kimura and Makoto Tatsuta

Types for safe and efficient exact computation . . . . . . . . . . . . 30
Michal Konecny and Eike Neumann

Partial Computable Functions: Analysis and Complexity . . . . . 33
Margarita Korovina and Oleg Kudinov

The Computational Content of the Constructive Kruskal Tree
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Dominique Larchey-Wendling

Fractal Intersections and Products via Algorithmic Dimension . 37
Neil Lutz

Computing Absolutely Normal Numbers in Nearly Linear Time 40
Jack H. Lutz and Elvira Mayordomo

On real numbers in the Minimalist Foundation . . . . . . . . . . . 42
Maria Emilia Maietti

A stratified pointfree definition of probability via constructive
natural density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Samuele Maschio

Isomorphism and Classification for Countable Structures . . . . . 46
Russell Miller

Nonstandard Analysis, Computability Theory, and metastability 48
Dag Normann and Sam Sanders

The Minimalist Foundation and its impact on the working math-
ematician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Giovanni Sambin

Computing with infinite data via proofs . . . . . . . . . . . . . . . . 55
Helmut Schwichtenberg

2



On the commutativity of the powerspace monads ?

Matthew de Brecht

Graduate School of Human and Environmental Studies
Kyoto University, Japan

matthew@i.h.kyoto-u.ac.jp

We present results concerning the upper and lower powerspace monads on the
category of topological spaces. In particular, we show that the monads commute
on a certain class of topological spaces, which includes all quasi-Polish spaces. We
will also discuss how this relates with the upper and lower powerlocales. (This is
based on joint work with Tatsuji Kawai).

? This work was supported by JSPS Core-to-Core Program, A. Advanced Research Net-
works and by JSPS KAKENHI Grant Number 15K15940.
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Hybrid Semantics for Higher-Order Store

Bernhard Reus

University of Sussex
bernhard@sussex.ac.uk

Proving soundness of type systems or program logics gets rather involved when
the programming language in question uses code pointers. In this case one also
uses the terms general references and higher-order store, respectively. The dynamic
allocation of memory cells can be modelled elegantly by Kripke semantics, which
unfortunately gets contaminated by mixed-variant recursive definitions required to
model higher-order stores. This recursion is a consequence of the fact that a store
can contain programs which are in turn store transformers.

Reasoning about such recursive structures in the context of Kripke models
is difficult as properties of high-order store are necessarily also to be defined by
recursion. The challenge is to come up with well-defined definitions that also give
rise to useful reasoning principles.

The issues involved will be demonstrated using a logic for imperative programs
based on Separation Logic which is a Hoare-style logic introduced by Reynolds and
OHearn that allows one to express the absence of aliasing and to specify memory
footprints of programs. This permits local reasoning w.r.t. heaps. To deal with the
complex recursive definitions mentioned above, complete ultrametric spaces, step-
indexing, or a hybrid (mixed) version of both can be employed. It will be explained
why the hybrid approach turned out to be particularly well suited for the program
logic devised.

Many of the findings presented are the result of a collaboration with Lars
Birkedal, François Pottier, Jan Schwinghammer, Hongseok Yang and others.
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Point-free Descriptive Set Theory and
Algorithmic Randomness

Alex Simpson

University of Ljubljana, Slovenia

I shall report on an ongoing programme of work, whose further development is
part of the RISE Computing with Infinite Data project. Some of the initial results
have been obtained in joint work with Antonin Delpeuch (University of Oxford).

It is possible to give a simple point-free treatment of the Borel hierarchy from
descriptive set theory. This supports, for example, point-free formulations of re-
sults related to category and measure. From a classical perspective, such results
mainly amount to a reformulation of standard theory. Nevertheless, the point-free
treatment has the added benefit of amenability to a constructive development. Not
only does this allow the computational content of theorems to be extracted, but,
perhaps more interestingly, the constructive theory also opens up the possibility of
a novel approach to algorithmic randomness.
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Sequentially locally convex QCB-spaces and
Complexity Theory

Matthias Schröder

TU Darmstadt, Germany

We study sequentially locally convex QCB-spaces. They are defined as vector
spaces which carry a QCB-topology such that the convergence relation is induced by
a family of seminorms. Moreover we discuss Co-Polish spaces and their role in Type-
2 Complexity Theory. Co-Polish Hausdorff spaces allow for a Simple Complexity
Theory in the sense that one can measure time complexity in terms of a discrete
(rather than a continuous) parameter on the input and the desired output precision.
The duals of separable metrisable locally convex spaces formed in the category QCB
turn out to be sequentially locally convex Co-Polish spaces.
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Concurrent program extraction

Ulrich Berger1 and Hideki Tsuiki2

1 Department of Computer Science, Swansea University
2 Graduate School of Human and Environmental Studies, Kyoto University

In constructive logic and mathematics the meaning of a proposition is defined
by describing how to prove it, that is, how to construct evidence for it. This is
called the Brouwer-Heyting-Kolmogorov interpretation. For example,

- evidence for a conjunction, A∧B, is a pair (d, e) where d is evidence for A and
e is evidence for B,

- evidence for a disjunction, A ∨ B, is a pair (i, d) where i is 0 or 1 such that if
i = 0 then d is evidence for A and if i = 1 then d is evidence for B,

- evidence for an implication, A → B, is a computable procedure that transforms
evidence for A into evidence for B.

Formalising this interpretation of propositions and the corresponding constructive
proof rules leads to a method of program extraction from constructive proofs: From
every constructive proof of a formula one can extract a program that computes
evidence for it. The extracted programs are functional and possibly higher-order
and can be conveniently coded in programming languages such as ML, Haskell or
Scheme.

If one attempts to develop program extraction into a method of synthesising
’correct-by-construction’ software, one realizes that one misses out an indispens-
able element of modern programming: Concurrency, that is, the composition of
independently executing computations.

Our work is an attempt to fill this gap. We present an extension of constructive
logic by a new formula construct Sn(A) with the following BHK interpretation:

- Evidence for Sn(A) is tuple of at most n computations running concurrently,
at least one of which terminates, and each of which, if it terminates, computes
evidence for A.

It turns out that the operator Sn becomes useful only in conjunction with a strong
form of implication, A ||B, to be read ’A restricted to B’. The BHK interpretation
of restriction is as follows:

- Evidence for A ||B is a computation a such that
- if there is evidence for B, then a terminates;
- if a terminates, then it does so with a result that provides evidence for A.

We present proof rules for Sn(A) and A ||B and give examples of proofs that give
rise to concurrent extracted programs. Somewhat surprisingly, the two operators
validate a concurrent version of the Law of Excluded Middle,

A ||B A || ¬B
S2(A)
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Indeed, assuming evidence a for A ||B and b for A || ¬B, one obtains evidence for
S2(A) by executing a and b concurrently.

The first example of a proof with concurrent computational content is concerned
with infinite Gray code, an extension of the well-known Gray code for integers to
a representation of the real numbers, introduced by Tsuiki [3]. One can prove that
the (coinductive) predicate characterising this representation implies a concurrent
version of the predicate characterising the signed digit representation and extract
from this a concurrent program that translates infinite Gray code into signed digit
representation. The extracted program is the same as the one given in [3].

The second example is about finding in a non-zero vector of real numbers an
entry that is apart from zero. A concurrent program solving this problem can be
extracted from a proof in the new logic. This can be further used to prove the
invertibility of non-singular quadratic matrices and hence to extract a program for
matrix inversion using a concurrent version of Gaussian elimination.

Currently, program extraction in this extended logic is done informally and
the extracted programs are implemented in a concurrent extension of Haskell. It
is future work to integrate the concurrent proof rules in a suitable interactive
proof system (for example, Minlog) and to implement the corresponding program
extraction procedure to make it fully automatic.

Prior to this work, a (non-concurrent) program translating an intensional ver-
sion of infinite Gray code into signed digit representation has been extracted from
a proof implemented in the Minlog system [1]. A precursor of our logical system
is presented in [2]. It allows for the extraction of non-determinism and concurrent
programs, however, without control over the number of threads, that is, processes
running concurrently at the same time.

Acknowledgements

This work was supported by the International Research Staff Exchange Scheme
(IRSES) Nr. 612638 CORCON and Nr. 294962 COMPUTAL of the European
Commission, the JSPS Core-to-Core Program, A. Advanced Research Networks
and JSPS KAKENHI Grant Number 15K00015.

The latest results were obtained while the authors were visiting the University of
Canterbury, Christchurch, New Zealand, in April 2017. We are grateful to Douglas
Bridges and Hannes Diener and the Mathematics Department of UC for hosting
our visits which were part of the CORCON project.
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ERA: Applications, Analysis and Improvements ?

Franz Brauße1, Margarita Korovina2, and Norbert Müller1

1 Abteilung Informatikwissenschaften, Universität Trier, Germany
2 A.P. Ershov Institute of Informatics Systems, Novosibirsk, Russia

In a cooperation between Trier and Novosibirsk, we are working in several
directions within the framework of exact real arithmetic (ERA). We report on work
in progress aiming at further cooperations, in particular with participants of the
CCC workshop 2017 in Nancy, and with particpants of the EU project CID in
general.

The following overlapping topics are of interest to us: application of ERA with
an emphasis on SMT solving, analysis of ERA w.r.t. computational complexity, and
improvements of ERA software using sophisticated internal representations.

Interface iRRAM is a software library [7] making it easy to perform correct
computations with real numbers. To ensure sufficient precision of intermediate
values within the computation, the library makes use of exceptions which are a
control flow mechanism, non-portable to languages besides C++. Therefore it is
challenging to implement an interface providing access to features of iRRAM (e.g.
real function computation, arbitrary precision approximations to reals, limits of
real sequences) to other languages like Java.

We currently explore two ways to design such an interface:

– Interpreter approach: An extended Real Random Access Machine is simulated
using iRRAM and can be used via a simple text oriented interface.

– Oracle approach: In this approach, your-favourite-programming-language uses
iRRAM’s functions as black boxes. This can be achieved by exposing (a subset
of) iRRAM’s Application Programming Interface in a language-independent
way by means of the LLVM Intermediate Language [8,5].
Going further, one such instance can be seen as a node in a computation graph
allowing for continuous input and output edges akin oracles. We attempt to
provide such a graph running parallel iRRAM instances at once.

Complexity We propose representations of reals and C[0, 1] corresponding to
iRRAM’s internal computations. To analyze complexity in the framework of Kawa-
mura and Cook [3], we discover a correspondance of these representations to that
introduced in [2]. This correspondance provides a way to reason about complexity
of iRRAM computations on specific inputs.

? The research leading to these results has received funding from the DFG grant WERA
MU 1801/5-1 and the DFG/RFBR grant CAVER BE 1267/14-1 and 14-01-91334.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
731143.
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SMT solver We are working on an SMT solver, targeting automatic verification
of problem instances formulated in first order language over real numbers.

Our main goal is to integrate numerical and symbolic approaches for continuous
constraint solving. We made a few steps into that direction: our solver ksmt supports
problems in SMT-LIB v2.5 format [1], features a CDCL-style SAT solver and via
point-oriented conflict resolution [4] solves problems with linear constraints using
rational arithmetic. We are currently working on interval-based bound propagation
and conflict resolution, incorporating exact real arithmetic and supporting non-linear
constraints.

Taylor models Taylor models, proposed by Makino and Berz [6], are multivariate
polynomials with real (or rather double precision) coefficients enhanced with an
error interval. The parameters denote unknown values in the interval [−1, 1] and
allow to express functional dependencies between different Taylor models that share
those parameters which encode error information.

The iRRAM implementation of Taylor models currently is restricted to polyno-
mials of degree one. We are experimenting with several strategies to keep linearity
under multiplication and, recently, division. Further goals are

– extension to nonlinear versions (models as well as elementary operations),
– analysis of the computational complexity,
– general improvement of ERA derived from Taylor models.
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σ-locales and Booleanization in Formal Topology

Francesco Ciraulo

Department of Mathematics
University of Padua

It is well known that the complemented elements of a Heyting algebra H form a
Boolean subalgebra of H. It is likewise well know that

B(H) = {x ∈ H | x = −− x} = {−x | x ∈ H}

is a Boolean algebra as well, although joins in B(H) differ from those in H. And
if H is complete, than B(H) is complete as well. In fact B(H) is a quotient rather
than a subalgebra of H. The mapping x 7→ − − x defines a lattice epimorphism
from H to B(H). In case H is complete, this become an epimorphism of frames.

From the point of view of the categories of locales, this means that every locale
L contains a Boolean sublocale B(L), which can be characterized as the smallest
dense sublocale of L (note that an arbitrary “intersection” of dense sublocales is
dense).

Giovanni Sambin has recently introduced the notion of an overlap algebra, which
can be understood as a “positive” alternative to a complete Boolean algebra (i. e.
with no explicit requirement about complements). A first advantage of his approach
is that powersets are examples of overlap algebras (in fact they are precisely the
atomic ones) even if one works with intuitionistic logic, although they are not
Boolean constructively [3, 4].

It has recently turned out [2] that overlap algebras arise as the smallest strongly
dense sublocales (in the sense of [5]) of overt locales. No choice principle is used in
the proof of such a result; and by classical logic the usual characterization of B(L)
is recovered.

The same statement can be given a predicative interpretation by substituting
a formal topology (S,C, Pos) in place of an overt locale L. In this framework,
overlap algebras can be characterized as those formal topologies for which the
following condition holds

(∀x ∈ S)[Pos(a ∧ x)⇒ Pos(U ∧ x)] =⇒ aC U (1)

for every a ∈ S and U ⊆ S. By classical logic such a condition can be seen as
expressing subfitness of the lattice (co-frame) Lop.

The construction of B(L) from L can be mimicked in the case of σ-locales [6].
In that case, B(L) is still the smallest dense σ-sublocale of L; however, it is not
Boolean any longer, in general. The σ-locales constructed in this way are called
d-reduced (“d” for “dense”) by Madden.

Our aim is to give a positive account of d-reduced σ-locales. In order to obtain
this, we work with σ-locales which are overt (in a suitable sense). The positivity
predicate Pos of an overt σ-locale L is then used to define a positive version of
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the codense congruence relation on L [6], which corresponds to the smallest dense
σ-sublocale B(L) of L. Actually, because of the positive nature of our definition,
the notion of density involved here is intuitionistically stronger than the usual one.

Time permitting, we will discuss two further points:

– the relationship between B(L) and Ran(µ), the smallest σ-sublocale of L of
full measure [7], provided that µ is a finite measure on L, and L is fitted (the
idea is that a full measure σ-sublocale of L must be dense in some sense);

– a predicative version of a classical result by Banaschewski [1] in the framework
of formal topology (here some form of the axiom of countable choice becomes
unavoidable).
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Rigorous Function Calculi

Pieter Collins

Maastricht University

Almost all problems in applied mathematics deal with spaces of real-valued
functions on Euclidean domains in their formulation and solution, representing
dependencies on parameters, time- and space-dependent solutions, or distributions
of random variables. There are many function spaces used in mathematics, each
appropriate for particular problems, including spaces of continuous, differentiable
and analytic functions, piecewise-continuous, measurable and integrable functions,
and both bounded and unbounded domains.

In this talk, I will outline a programme (Work Package 9 of CID) for developing
abstractions of these function spaces within formalisms of computable analysis, and
providing concrete implementations enabling efficient rigorous computation. The
goal is to give practitioners in the areas of e.g. hybrid systems, stochastic systems
and partial differential equations access to the tools needed to develop rigorous
solution methods with guaranteed error bounds and arbitrary accuracy. Further,
by specifying appropriate abstract data types, it will be possible to pass functions as
first-class objects from one computational process to another, allowing the creation
of integrated computational work-flows.

First implementations of such a function calculus for continuous and differential
functions are contained in the C++ package Ariadne [1] for reachability analysis
of hybrid systems and in the Haskell package AERN (Approximating Exact Real
Numbers) [2], and in the talk I will first explain the ideas and approach used by Ari-
adne: Abstract classes specifying pure virtual methods for computable operations
are provided to give implementation-independent interfaces. A distinction is made
between effective representations of functions, which provide sufficient information
to evaluate the function arbitarily accurately, and validated/verified representa-
tions, which allow evaluation up to some error tolerance. Concrete computations
are performed using Taylor polynomial models [3] with uniform error bounds, which
were introduced for the rigorous numerics package COSY Infinity [4], and can be in-
stantiated in Ariadne with both double-precision and multiple-precision rounded
arithmetic. However, the framework is flexible enough to allow other function mod-
els, such as polynomials represented in Bernstein or Chebyshev bases. Applying the
tool to the study of hybrid systems also requires functionality for solving differential
equations to compute the continuous dynamics φ̇(x, t) = f(φ(x, t)), and algebraic
equations to find crossing times g(φ(x, τ(x)) = 0.

The main approach of the programme will be to first clean-up the abstractions
and concrete types provided by Ariadne, if possible providing language-neutral
specifications, and then extend with new functionality. In the second part of the
talk, I will give an overview of the planned functionality, and how it could be
implemented.

The abstractions for the important classes of real function spaces arising in
mathematics should be defined in terms of core computable operations supported.
The continuous functions support evaluation, differentiable functions support sym-
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bolic and automatic differentiation, and analytic functions support power series and
convergence rates. The measurable and integrable functions needed for stochastic
processes do not support evaluation, but can be effectively defined using completion
constructions [5]. Sobolev spaces, which are important for the solution of partial
differential equations, could be defined in terms of weak derivatives and function
norms. For nondeterministic systems such as differential inclusions, and systems
defined with piecewise-continuous functions, types of set-valued functions are also
required. Finally, concrete implementations of these types will be given, ideally with
both simple, easily verified algorithms, and with more complex, efficient algorithms.
For example, we may with to base implementations of continuous functions over
a bounded box on Fourier series [6] in order to solve partial differential equations
using Galerkin methods [7].
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Ramsey actions and Gelfand duality

Willem L. Fouché

Department of Decision Sciences,
School of Economic Sciences

University of South Africa, Pretoria

If G is a Hausdorff topological group, we write Crub(G) for the commutative
C∗-algebra with an identity element based on the bounded (complex-valued) func-
tions on G which are right-uniformly continuous. Thus a function f : G → C
belongs to Crub(G), iff it is bounded and for every ε > 0, there is some symmetric
neighbourhood V of the identity element of G (meaning that V = V −1), such that:

s−1t ∈ V =⇒ |f(s)− f(t)| < ε.

The Gelfand dual of Crub(G) is denoted by ΓG, which is a compact Hausdorff space.
We shall refer to fixed points of the action of G on ΓG as Ramsey characters.
To motivate this terminology, let as look at the following different way of looking

at the oldest result in Ramsey theory. In a way, we present a dynamical C∗-algebraic
reformulation of this result. But first we must introduce some terminology.

Let η be the Cantor order. This means it is an example of a countable model
of the first order properties of the structure (Q,≤). Write S∞ for the symmetry
group of a countably infinite set. Without loss of generality, we may assume that
the countable infinite set on which S∞ acts is coded by the natural numbers N. As
such we can view S∞ as a subset of NN. We topologise NN by imposing the discrete
topology and then a product topology. The resulting space is frequently referred
to as the Baire space . We topologise S∞ via encodings to view S∞ as embedded
thus

S∞ ⊂ NN.

As such it is a closed subgroup of the Baire space NN. Write Aut η for all the
symmetries of η. We can naturally view Aut η as a subgroup of S∞. In fact Aut η
is a closed but not open subgroup of S∞.

We have, writing G = Aut η, that ΓG is a Stonean space. Indeed, (see [7])

Crub(G) ' C( lim
←−

H<oG

β(G/H)),

and hence, by Gelfand duality, we have the topological homeomorphism

ΓG ' lim
←−

H<oG

β(G/H).

Here H <o G means that H is an open subgroup of G and for a discrete space
D , we write β(D) for the Stone-Čech compactification of D.

Oldest Ramsey Theorem. For natural numbers r, n, k there is a natural
number N , such that for any r-colouring χ of the k-subsets of [N ] := {1, . . . , N},
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there is a a n-subset A of [N ] such that χ assumes a constant value on all the
k-subsets of A.

A case can be made for the statement that this classical finitary Ramsey theo-
rem can be expressed, in the context of C∗-algebras as

Theorem 1. Let Aut(η) be the topological symmetry group of the Cantor order
η. Write C for the C∗–algebra of right-uniformly continuous functions on Aut η.
Then there is a Gelfand character χ on C such that

σχ = χ,

for all σ ∈ Aut η.

In particular, G = Aut η admits a Ramsey character.
In this project we explore the extent to which such a Ramsey character is

“random” or could be constructively expressed. This work is a continuation of
what can be found in [3], [4] and [5].

The theorem expresses, in a different language, that the action of the group
G = Aut η on any compact Hausdorff space admits a fixed point. In other words,
G = Aut η is an extremely amenable group. ( [8], [7].) The arguments in [8] provide
an attractive way for deriving Ramsey’s theorem from the extreme amenability of
Aut η.

The envisaged goal of this project is to understand dynamical versions of Ram-
sey theorems in a constructive and/or effective topological and probabilistic con-
text. Some precursors of this can be found in [1], [2] and [6].
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The study of the long term behavior of a system has long attracted a signifi-
cant amount attention in the scientific community. However, although significant
advances were made by mathematicians like Poincaré, the discovery of strange at-
tractors were only made in the 1960s, with the advent of the digital computer,
where numerical simulations were used to provide new insights on the asymptotic
behavior of several classes of systems. A celebrated result (the Poincaré-Bendixson
theorem) shows that for flows in space of dimension less than 3, the flow can only
converge to limit sets constituted by fixed points or periodic orbits. However not
much was known on what happened on higher dimensions. In 1963 E. N. Lorenz
[3] studied the following system (the Lorenz system)





x′ = σ(y − x)
y′ = ρx− y − xz
z′ = xy − βz

(1)

where σ, β, and ρ are parameters, as a simplified model of atmosphere convection
in an attempt to understand the unpredictable behavior of the weather. Lorenz’s
original numerical simulations, where the parameters were given by σ = 10, β =
8/3, and ρ = 28, suggested that for any typical initial condition, the system would
eventually tend to a limit set with a rather complicated structure, which was more
complex than a fixed point or a periodic orbit – the Lorenz (strange) attractor.
Moreover, the dynamics on this attractor seemed to magnify small errors very
rapidly, rendering impractical to numerically simulate an individual trajectory for
an extended period of time.

The Lorenz system became a landmark in the modern paradigm of the numerical
study of chaos: instead of studying trajectories individually, one should study the
limit set of a typical orbit, both as a spatial object and as a statistical distribution
[4]. However, proving the existence of the Lorenz attractor in a rigorous fashion
turned out to be no easy task; indeed, the problem was listed in 1998 by Smale as
one of the eighteen unsolved problems he suggested for the 21st century [5].

In 1979, based on the behavior observed in the numerical simulations of (1),
several authors like Afraimovich, Bykov, and Shil’nikov [1], and Guckenheimer
and Williams [2] proposed a class of models for the Lorenz system, the geometric
Lorenz models, whose flow satisfies a certain list of geometric properties intended
to capture the observed numerically simulated behavior in the Lorenz system. In
particular, they proved that any such flow must contain a strange attractor, which
supports a unique invariant probability distribution that describes the limiting
statistical behavior of almost any initial condition. The strange attractor contained
in a geometric Lorenz flow is called the geometric Lorenz attractor.
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Using a combination of normal form theory and rigorous numerics, Tucker [6]
provided, in 2002, a formal proof of the existence of the Lorenz attractor by showing
that the Lorenz system behaves like a geometric Lorenz models. Since a geometric
Lorenz model supports a strange attractor, so does the Lorenz system (1).

Here we will examine the computability of geometric Lorenz attractors and
their physical measures. In particular we will prove the following result.

Main Theorem. For any geometric Lorenz flow, if the data defining the flow
(i.e. the right-hand side of (1)) is computable, then its attractor is a (inner and
outer) computable subset of R3. Moreover, the physical measure supported on this
attractor is a computable probability measure.
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Summary: The category EQU of equilogical spaces (taken as partial equiva-
lence relations (PERs) on prime-algebraic lattices) is Cartesian closed even in an
intuitionistic set theory, but without excluded middle EM, open and closed sub-
spaces cannot be shown to be complements of each other. On the other hand, open
and closed sublocales are complementary even without EM, but it is not easy to
embed the category of locales into a Cartesian closed category. Here we combine
the two approaches and define a variant of EQU with PERs on the double-duals of
prime-algebraic lattices. The resulting category EQU2 is Cartesian closed and has
complementary open and closed subspaces even without EM.

General idea: We work in an intuitionistic set theory (with powersets). We
first consider the category PAL of prime-algebraic lattices and Scott-continuous
functions, which has set-indexed products

∏
i∈I Li and exponentials [L → M ].

An important example is Σ = P1 ordered by ‘⊆’. With EM, Σ has exactly two
elements 0 and 1, but without EM, we have to reckon with more elements. Nev-
ertheless, Scott-continuous functions s : Σ → Σ are uniquely determined by their
values on 0 and 1. They preserve binary meets and inhabited joins.

A possible incarnation of EQU has objects X = (LX ,∼X) where LX is in PAL
and ‘∼X ’ is a PER on the points of LX . Morphisms f : X → Y are those Scott-
continuous f : LX → LY that preserve the respective PERs (a ∼X b⇒ fa ∼Y fb).
Two morphisms f, g : X → Y are considered as equal (f ' g) if they map self-
related points to related results (a ∼X a ⇒ fa ∼Y g a). (Without choice, one
should not form equivalence classes, but change the notion of equality.) PAL can
be embedded into EQU by mapping L to (L,=L). EQU has set-indexed products∏
i∈I Xi, exponentials [X → Y ], and equalizers. Open and closed subspaces of X

can be defined from morphisms p : X → Σ as O(p) = {a ∈ LX | p a = 1} and
C(p) = {a ∈ LX | p a = 0}, yet without EM, it is not possible to prove that O(p)
and C(p) are complements of each other, nor that the union of two closed subspaces
is closed (since C(p) ∪ C(q) = C(p ∧ q) cannot be shown).

With locales, the situation is different: Even without EM, it is possible to show
that open and closed sublocales are complements and that the join of two closed
sublocales is closed. The reason is that locales are defined via opens, which offer
additional structure compared with points. On the other hand, it is hard to embed
the locales into a decent CCC because of the contravariant nature of the opens.

The basic idea for our category EQU2 is to use neither points nor opens, but
second-order opens (opens of opens) because these are covariant again. For a prime-
algebraic lattice L, let ΩL = [L→ Σ] and Ω2L = [ΩL→ Σ]. This Ω2 is the object
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part of the double-dualization monad with unit ηL : L→ Ω2L, where ηL xu = ux.
The image of ηL in Ω2L consists exactly of those A : ΩL→ Σ that preserve finite
meets and arbitrary joins (sobriety).

The first idea is to define the objects of EQU2 as (L,≈) where ≈ is a PER
on Ω2L. Yet this does not work; to obtain Cartesian closure, the domain of the
PER has to be restricted. The appropriate domain is the set L• ⊆ Ω2L of fuzzy
points of L, where a fuzzy point is a function ΩL → Σ preserving binary meets
and binary joins (hence inhabited joins by virtue of Scott continuity). Fuzzy points
are more general than the η-images of points – they are not required to preserve
empty meet and empty join. Compared with points, they have enough additional
structure for making open and closed subspaces complements of each other, but
are still sufficiently similar to points so that Cartesian closure can be proved.

Fuzzy points: Every η x (x ∈ L) is in L• (points are special fuzzy points).
Every constant function K : ΩL → Σ is in L•. For s : Σ → Σ and A ∈ L•,
s ◦ A ∈ L•. For A ∈ L•, let the “range” ρA : Σ → Σ be ρA = λbΣ . A(Kb) where
Kb is the constant function λxL. b ∈ ΩL. For f : L→M , Ω2f : Ω2L→ Ω2M cuts
down to f• : L• →M•, and f•(s ◦A) = s ◦ f•A and ρ(f•A) = ρA.

Objects of EQU2: (L,≈) where L is in PAL and ≈ is a PER on L• such that
(1) A ≈ B ⇒ ρA = ρB; (2) For all s : Σ → Σ, A ≈ B ⇒ s ◦A ≈ s ◦B; (3) For all
constant K ∈ L•, K ≈ K; (4) For all M ⊆ [Σ → Σ] that are jointly monic (i.e.,
(∀m ∈ M.ma = mb) ⇒ a = b), we have (∀m ∈ M.m ◦ A ≈ m ◦ B) ⇒ A ≈ B.
Properties (1) and (2) are needed to get Cartesian closure while (3) and (4) are
needed to make open and closed subspaces complementary.
Notation: |(L,≈)| = {a ∈ L | η a ≈ η a}; ‖(L,≈)‖ = {A ∈ L• | A ≈ A}.

Morphisms f : X → Y where X = (LX ,≈X) and Y = (LY ,≈Y ) are contin-
uous functions f : LX → LY with A ≈X A′ ⇒ f•A ≈Y f•A′. Two morphisms
f, g : X → Y are considered equal (f ' g) iff for all A in ‖X‖, f•A ≈Y g•A.

Points: The global points x : 1→ X correspond to the elements of |X|. Since
equality of EQU2 morphisms is based on ‖X‖ instead of |X|, EQU2 cannot be
shown to be well-pointed (in contrast to PAL and EQU).

Product:
∏
i∈I(Li,≈i) = (

∏
i∈I Li,≈) where A ≈ A′ iff ρA = ρA′ and for all

i in I, π•iA ≈i π•iA′. For inhabited I, the condition ρA = ρA′ is redundant, and
for empty I (terminal object), ρA = ρA′ is equivalent to A = A′.

Exponential: L[Y→Z] = [LY → LZ ] and H ≈[Y→Z] H
′ iff (ρH = ρH ′ and

B ≈Y B′ ⇒ H · B ≈Z H ′ · B′) where for H ∈ [LY → LZ ]• and B ∈ L•Y ,
H ·B = λwΩLZ . H(λh[LY→LZ ]. B(w ◦ h)).

Embedding of PAL into EQU2 as a full subcategory by L 7→ (L,=L•).
In particular, Σ can be considered as an EQU2 object. The embedding preserves
products and exponentials.

Subspaces: A subspace of X = (L,≈) is a subset S ⊆ ‖X‖ such that (1)
A ∈ S & A ≈ B ⇒ B ∈ S; (2) For all s : Σ → Σ, A ∈ S ⇒ s ◦ A ∈ S; (3)
For all constant K ∈ L•, K ∈ S; (4) For all M ⊆ [Σ → Σ] that are jointly
monic, (∀m ∈ M.m ◦ A ∈ S) ⇒ A ∈ S. Every subspace S of X induces a space
X|S = (L,≈S) where A ≈S B iff A ≈ B and A ∈ S (and B ∈ S).

The least subspace ∅̄ is the set of constant functions in L• and the greatest
subspace is ‖X‖ itself. The subspaces form a frame with inhabited meet being
intersection (

∧
i∈I Si =

⋂
i∈I Si) and inhabited join being

∨
i∈I Si =M (

⋃
i∈I Si),
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i.e., union, which has properties (1)–(3), followed by a closure operator M to
achieve (4). (In contrast, sublocales form a coframe, not a frame.)

Equalizer: For f, g : X → Y , E(f, g) = {A ∈ ‖X‖ | f•A ≈Y g•A} is a
subspace of X, and X|E(f,g) is the equalizer of f and g.

Special case Y = Σ: ≈Σ is equality in Σ•, and f•A =Σ• g•A iff Af =Σ Ag.
Open and closed subspaces: For p : X → Σ, let O(p) = E(p,K1) = {A ∈

‖X‖ | Ap = A (K1)} and C(p) = E(p,K0) = {A ∈ ‖X‖ | Ap = A (K0)}.

Theorem. O(p) and C(p) are complements, i.e., O(p)∩C(p) = ∅̄ and O(p)∨C(p) =
‖X‖.

Proof (sketch). If A ∈ O(p) ∩ C(p), then Ap = A (K0) = A (K1), so A is constant,
hence in ∅̄.
For any A ∈ ‖X‖, let s0, s1 : Σ → Σ be given by s0 a = a∨Ap and s1 a = a∧Ap.
Then (s0 ◦A) p = Ap ∨Ap = Ap and (s0 ◦A) (K0) = A (K0) ∨Ap = Ap, whence
s0 ◦A ∈ C(p) ⊆ O(p) ∨ C(p). Likewise, s1 ◦A ∈ O(p) ⊆ O(p) ∨ C(p). Property (4)
gives A ∈ O(p) ∨ C(p) ({s0, s1} is jointly monic because a ∨ c = b ∨ c & a ∧ c =
b ∧ c ⇒ a = b in any distributive lattice).

Further properties. O(K1) = ‖X‖, O(p ∧ q) = O(p) ∩ O(q), O(
∨
i∈I pi) =∨

i∈I O(pi), C(K1) = ∅̄, C(p ∧ q) = C(p) ∨ C(q), C(
∨
i∈I pi) =

⋂
i∈I C(pi).

So the join of two closed subspaces is closed.
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Duality of upper and lower powerlocales on locally
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Tatsuji Kawai

Dipartimento di Matematica, Università di Padova

In locale theory (i.e. point-free topology), a powerlocale of a locale is a construc-
tion whose points form a certain class of sublocales of the original locale. In this
work, we study interaction between the following three powerlocale constructions
on a locally compact locale X:

1. Upper powerlocale PU(X), whose points are compact fitted (or saturated)
sublocales of X,

2. Lower powerlocale PL(X), whose points are overt weakly closed sublocales of
X,

3. Scott topology SX , whose points are open sublocales of X (namely elements of
X).

Here, SX is the exponential of a locally compact locale X over the Sierpinski locale
S, and this construction is only possible on locally compact locales.

Johnstone and Vickers [1] showed that the upper and lower powerlocale con-
structions commute. Moreover, Vickers [2] showed that the composition of upper
and lower powerlocale construction coincides with taking Scott topology twice,
which is called the double powerlocale construction P(X). Thus, so far we have

PU(PL(X)) ∼= PL(PU(X)) ∼= SSX = P(X).
Our main result says that three powerlocale constructions commute in a mixed

way.

Theorem 1. If X is a locally compact locale, then

PU(SX) ∼= SPL(X), PL(SX) ∼= SPU(X).

The above result is obtained in a purely point-free way and does not rely on the
spatiality of locally compact locales.

This work is based on joint work with Matthew de Brecht (Kyoto University,
Japan) and Steve Vickers (The University of Birmingham, UK).
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A Hamiltonian system is a dynamical system where the evolution over time is
described by 2n first order ordinary differential equations of the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(1)

for a smooth real-valued function H(t, q, p) called the Hamiltonian. The state of the
system is a point (q, p) in phase space with vectors q, p ∈ Rn called the position and
momentum, respectively, and t ∈ R is the time. Hamiltonian systems are widely used
in physics to describe the motion of mechanical systems. An important property of
Hamiltonian systems is given by Liouville’s theorem: The measure of a subset of
phase space remains constant over time.

Given an initial condition q0, p0 for time t0 and assuming H is analytic in a
neighborhood of (t0, q0, p0) the initial value problem (1) has a unique, analytic
solution ϕ : R → R2n defined on some neighborhood of t0. If H is additionally
polynomial time computable, ϕ is also a polynomial time computable real function
[3].

We consider the problem of simulating the motion of a given Hamiltonian system
on some fixed time interval [0, T ], i.e., given initial conditions q0, p0 at time 0 taken
from some fixed compact subset of initial conditions and some t ∈ [0, T ], compute
q(t).

One problem is that the solution might not exist up to T due to singularities on
the real line. On the other hand, if there are no real singularities in [0, T ] then the
algorithm to solve the initial value problem can be iterated until the desired time is
reached. The computational complexity, however, depends heavily on the location
of the complex singularities, as they determine the number of iterations necessary.
It is therefore for many systems impossible to bound the worst-case complexity
independently from the initial condition. Nonetheless, the solution might not have
complex singularties close to the real line for most initial values, allowing efficient
computation on average.

Average case complexity for real functions was recently introduced by Schröder,
Steinberg and Ziegler [5]. In this talk we give an application of the theory to the
problem of simulating Hamiltonian dynamical systems. We focus on the famous
n-body problem and some of its variations. The classical n-body problem describes
the motion of n particles with masses m1, . . . ,mn under their mutual gravitational
attraction either in 2 or 3 dimensions. It can be written in Hamiltonian form (1)

? The authors thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core
Program (A. Advanced Research Networks) for supporting the research.
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with Hamiltonian

H(q, p) =
n∑

i=1

‖pi‖2
2mi

−
∑

1≤i≤j

mimj

‖qi − qj‖
(2)

with q, p ∈ R2n for the planar and q, p ∈ R3n for the spatial case. The Hamiltonian (2)
is polynomial time computable and analytic in a neighborhood of any initial value
and does not depend explicitly on the time t, i.e., the value of the Hamiltonian for
a given initial value is constant over time. We call it the system energy.

It is well known that for n ≥ 3 the problem does not have an analytical solution.
Thus, the only possible approach to predict the motion in general is numerical
simulation. For the special case of n = 3 and non-zero angular momentum there
is a way to continue the solution beyond the singularities by a convergent power
series due to Sundman [6], theoretically allowing to simulate the motion up to any
time for all initial conditions. This solution is, however, not practical as the series
converges extremely slowly [1]. On the other hand, Saari [4] showed that for n ≤ 4
the subset of initial values leading to singularities has Lebesgue measure zero.

While Saari’s result guarantees that the simulation is possible for almost all
initial conditions, we need a stronger result to bound the computational complexity.
We define an ε-collision as a state of the system where two particles have distance
less than ε to each other. If the initial values are chosen such that no ε-collision
occurs in [0, T ], the number of steps can be bounded in terms of ε which in turn
induces a bound on the overall complexity. We thus want the measure of the set of
initial conditions leading to an ε-collision in some fixed time interval tend to 0 for
ε→ 0. While at first this may seem like a simple generalization of Saari’s theorem,
the ideas in Saari’s proof can not be applied directly and to our best knowledge no
such result is known so far. Indeed, without the time restriction the statement is
false even for the three body problem [8].

As a first step, we consider a slightly modified version of the problem, the
planar circular restricted three body problem. Two massive particles move on a
fixed circular orbit in the plane and a third, massless particle is influenced by their
gravitational forces. Although this problem is much easier than the original problem,
it still can not be solved analytically [2] and has been studied for more than 200
years due to its numerous applications [7].

Our main result is that for initial values with bounded position and energy
the subset of initial conditions leading to an ε-collision at some time t ∈ [0, 1] has
Lebesgue measure bounded by a function proportional to

√
ε and thus indeed tends

to 0 for ε→ 0. We further use this result to show that simulating the planar circular
restricted three body problem for finite time is polynomial time computable on
average. We compare our results with numerical simulations and discuss possible
extensions of our ideas to the general n-body problem and other Hamiltonian
systems as well difficulties that arise.
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At the Dagstuhl seminar The Perfect Tree Theorem and Open Determinacy
[2], Marcone raised the question which Weihrauch degree(s) correspond to the
principle ATR0 in reverse mathematics. Candidates discussed were closed choice
(denoted CNN) or unique closed choice (denoted UCNN) on Baire space (as studied
in [1]). Two theorems were suggested as starting points for this exploration:

Theorem (Perfect Tree Theorem). If T ⊆ N<ω is a tree such that [T ] is
uncountable, then T has a perfect subtree.

We recall that tree is called perfect, if any vertex in the tree has at least two
incomparable descendents. Any perfect subset of NN arises as the set of infinite
paths through a perfect tree, and for any perfect tree T we find [T ] to be perfect.
The Perfect Tree Theorem in particular implies that the continuums hypothesis
holds if restricted to closed sets.

Theorem (Open determinacy). Consider a two-player infinite sequential game
with moves from N. Let the first player have an open winning set. Then one player
has a winning strategy.

We find that the Weihrauch degrees of these theorems depend on the way they
are interpreted as computational problems, and they do so in the same pattern:

Theorem 1. The following are Weihrauch equivalent3:

1. CNN

2. Given a tree T ⊆ N<ω is a tree such that [T ] is uncountable, find a perfect
subtree of T .

3. Given an open game with moves from N such that Player 2 has a winning
strategy, find a winning strategy.

Theorem 2. The following are Weihrauch equivalent:

1. UCNN

2. Given a tree T ⊆ N<ω such that [T ] is non-empty and countable, find a sequence
(pn)n∈N satisfying:

[T ] = {pn | n ∈ N}
3. Given an open game with moves from N such that Player 1 has a winning

strategy, find a winning strategy.

3 The equivalence of 1 and 2 was already noted by Brattka and Marcone.
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Theorem 3. The following problems are strictly harder than CNN :

– Given a tree T such that [T ] is non-empty, find a subtree T ′ and a sequence
(pn)n∈N such that either T ′ is perfect or [T ] = {pn | n ∈ N}.

– Given an open game with moves from N, find a Nash equilibrium.

The latter shows that games with moves from N behave very differently com-
pared to games with finitely many moves. In [3] it was shown that for games with
finitely many moves and winning sets from the finite levels of the difference hierar-
chy, there always is a player such that the promise that this player wins does not
reduce the Weihrauch degree of the problem to find a winning strategy.

It seems like a tempting conjecture that the two problems in Theorem 3 might
be equivalent, but proving this seems to be beyond our current reach.
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In this extended abstract we introduce our research plan. The main goal of
the research is to develop/extend libraries and tools supporting development of
certified algorithms for Exact Real Arithmetic(ERA). This project would require
at least the following points:

(1) Research on foundations of computing with continuous data:
We have to give a logical foundation for the formalization of the structure of
real numbers as computable abstract axiomatized data type. It would be a
necessary basis for the semantics of an extension of some imperative object-
oriented programming language can be provided.

(2) Research on tools supporting ERA:
There are several tools supporting ERA among which iRRAM [1] seems to be
most realistic and fast. Moreover, there have been many reports demonstrating
its feasibility such as [4] and [2]. There has even started to certify library of
IRRAM [3]. However, one needs to go much further to reach the feasibility and
soundness of iRRAM and its library.

(3) Development of libraries for computable reals in a theorem prover:
In [2], the authors demonstrates how to certify some ERA algorithms written
using iRRAM. For that purpose, they use Hoare logic. We believe that it is
possible to extend their idea in several directions. One of them is to (semi-
)automatize the certification process. This idea is partially realized in [3] which
we believe could be extended and automatized.
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A symbolic-heap system is a fragment of separation logic, and characterizes
only shapes of heaps by abstraction. It is useful for memory error checking in soft-
ware verification. The truth of entailments in this system is known to be decidable.
Extensions of the symbolic-heap systems with arithmetic and arrays have been
actively studied recently. These extensions enable us to handle arrays of program-
ming languages as well as pointer arithmetic in a symbolic-heap system. This talk
proves the decidability of entailment checking in a symbolic heap system of sep-
aration logic with Presburger arithmetic and arrays. It is proved by translating
this problem into a formula in Presburger arithmetic and using the decidability of
Presburger arithmetic.
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AERN21 is a set of Haskell packages for programming exact numeric compu-
tation with the dual focus on demonstrably correct code and efficient execution.
AERN2 also aims to be a playground for easy experimenting with various concepts
and algorithms of computable analysis and real complexity theory. We report how
the AERN2 types facilitate flexible choice of optimised evaluation strategies for
Cauchy sequences, safe mixing of types in expressions without explicit conversions
and safely using partial operations, detecting errors at compilation and ruling out
run-time exceptions, infinities and not-a-numbers (NaNs).

Computing enclosures of exact values

Numerical computation usually involves values of various types, not only numbers
such as integers, dyadics, rationals, real and complex numbers, but also vectors,
matrices, closed real intervals, continuous, differentiable or analytic real functions,
infinite sequences and various types of subsets of Rn. Some of these values are
finite (i.e. they form discrete spaces, e.g. Q) and some are infinite (i.e. they form
uncountable spaces, e.g. R). Infinite values are typically approximated by finite
values, e.g. a real number is often approximated by a fairly small dyadic interval
that contains this number. We call such a set that approximates an exact infinite
value an enclosure. For an enclosure of a value in a metric space, we define the
accuracy of the enclosure in terms of its diameter. An infinite value is often ap-
proximated by a sequence of enclosures whose intersection is the value and whose
diameter converges to 0.

AERN2 provides interval arithmetic using type MPBall of balls with dyadic
centres and double-precision radii. Exact real number computation is provided in
two ways:

– Cauchy sequences: A value of type CauchyReal encapsulates a function from
Accuracy to MPBall. Arithmetic on these values usually works in 2 passes: the
accuracy requirement is passed top-down to determine sufficient accuracies of
all operands and constants and then the resulting enclosures are combined
bottom-up to give an enclosure of the resulting real number.
There are various evaluation strategies for computing enclosures for accur-
acy queries, including:
• Caching of the best enclosure so that it can be reused in subsequent queries.
• Querying and evaluating several Cauchy reals in parallel.

1 https://github.com/michalkonecny/aern2
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Each evaluation strategy is given as a different Arrow [1]. A real number compu-
tation can be written in an arrow-generic way so that the same program can
be evaluated with different strategies, e.g. with or without caching, in parallel
or sequentially.

– Iterative evaluation: An MPBall computation is repeated with increasing preci-
sion until the accuracy of the result is sufficient. The result is a CauchyReal but
it is not computed from other CauchyReals. This is similar to the main mode of
exact real computation in the iRRAM C++ library.

We compare the performance of these two methods using several common
benchmarks. With the caching evaluation strategy, the two methods have sim-
ilar speed of execution, but the caching of CauchyReal approximations causes this
method to take more memory than iterative evaluation. We also benchmark the
benefit of parallel evaluation in exact Fast Fourier Transform (FFT).

AERN2 also provides several representations of continuous unary real functions
using enclosures that are based on polynomials. We have compared their perform-
ance in [2].

Types for expressions with mixed types and partial operations

In a typical numerical computation, numerical expressions tend to mix values of
different types with automatic conversions and type-based dispatch for different
implementations of common operations (e.g. integer, rational, floating-point, mat-
rix multiplications). An incorrect application of a partial operation such as division
or square root either throws an exception or returns a not-a-number (NaN) value.
Consider the following expressions:

-2 * (k/n) * pi * complex_i (1)

integrateOverDom (dyadicInterval (-1,1)) (sin(10*f)) (2)

Here k and n are integers, forming the rational k/n, which is multiplied by an
integer on one side and a real number on the other, and finally the resulting real
number is multiplied by a complex number. Moreover, the expression (1) has no
value for n = 0. In the second expression, f has to be an integrable unary function
which is defined on the interval [−1, 1].

Dynamically typed languages such as Matlab and Python would let us imple-
ment these expressions very conveniently, automatically converting the integers to
rationals and then converting the result of the fraction to a real etc. Nevertheless,
without static types the programmer gets little help in checking the correctness
of the expressions and one usually ends up executing tests and debugging many
exceptions and one still does not get much assurance that no exceptions will occur
when the code is deployed. These problems get only worse when introducing more
advanced numerical types, such as real functions.

On the other hand, statically typed languages such as ML and Haskell detect
most type mismatches early (e.g. as soon as the code is saved in the editor), while

31



they infer the most general types for expressions. Moreover, these languages have
the potential to deal properly with partial operators, although this is rarely done.
The downside is that these languages usually restrict the mixing of types in ex-
pressions and therefore expressions tend to include explicit type conversions.

AERN2 overrides many of the Haskell defaults so that numerical expressions
allow Matlab-style mixing of values of different types in operators while maintain-
ing early detection of type mismatches during compilation. In essence, types of
expressions are consistently derived bottom-up using multi-parameter type classes
and associated type functions. For example, the expression sin(10*f) is valid if f
is of a type t that satisfies the constraints CanMulBy t Integer and CanSinCos t
and its type is SinCosType t. In the default Haskell numerical type hierarchy, this
expression would require Floating t. AERN2 types such as MPBall and CauchyReal
satisfy Floating and thus can be used also with the traditionally type-checked
Haskell numerical expressions.

Partial operators have return type using an “error” monad. Let us denote
this monad E for short. For instance, we could have (/) :: a -> b -> E c and
sqrt :: c -> E d. Nevertheless, this solution does not compose well as, for instance
\x y -> sqrt(x/y) :: a -> b -> E (E c). To get rid of the nested E, we could use
monadic join :: E(E t) -> E t but this would clutter the expressions. AERN2
gives type-generic partial operations a more convenient type similar to, for instance,
(/) :: a -> b -> EnsureE c and sqrt :: c -> EnsureE d, where EnsureE (E t) = (E t)
and EnsureE t = E t otherwise. As the type function EnsureE is idempotent, there
is no need to add join.
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Classical computability theory has a long term tradition to study partial com-
putable functions. While the class of effective topological spaces, in particular com-
putable Polish spaces, is one of the main objects for investigation in the Effective
Descriptive Set Theory (EDST) the class of partial computable functions PCF
over effective topological spaces has not been deeply investigated yet. We report
on ongoing research addressing natural problems related to partial computability.

PCFXY We fix the definition of a partial computable function [4] in the settings of
effectively enumerable spaces is motivated by the following observations. It is well-
known that in the domain–theoretic framework a partial computable real function
is effectively continuous on its domain and the domain is a Π0

2 [R] in the effective
Borel hierarchy [7] (see also [3]). On the computable Polish spaces this definition
agrees with several known approaches to partial computability [12, 1, 2]. We show
that the class PCF of partial computable functions over effectively enumerable
spaces is closed under composition.

Weak separability for majorant–computability We perform comparative
analysis of partial computability in frameworks of different approaches, in par-
ticular PCFXR and the majorant computable real-valued functions MCXR [5].
Thus, an effectively enumerable topological space X satisfies the weak separabil-
ity property of the effectively open subsets if and only if PCFXR = MCXR. It is
worth noting that the Baire, Cantor spaces and the real numbers satisfies the sep-
arability property of the effectively open subsets It will be challenging to establish
whether all computable Polish spaces satisfy this property.

Index sets for PCFXY over computable Polish spaces We give a charac-
terisation of partial computability in terms of classical enumeration operators (see
e.g. [9]). Then based on this characterisation we show the existence of the principal
computable numbering of PCFXY for computable Polish spaces. This allows us to
study the complexity of index sets of important problems in computable analysis
such as function equality and root verification. It turns out that for some prob-
lems the corresponding complexity does not depend on the choice of a computable
Polish space while for other ones the corresponding choice plays a crucial role. For
example, the problem of function equality is Π1

1 -complete for any X and Y while
the complexity of totality problem of partial computable real-valued functions on
X differs from space to space e.g. for X = R totality problem is Π0

2–complete
whereas for X = N it is Π1

1–complete.
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Descriptive complexity of PCF images First we show the existence of a
partial computable surjection between any computable Polish space and any ef-
fectively enumerable topological space with point recovering. Using this result we
prove that for any computable Polish spaces X and Y, the images of partial com-
putable functions f : X → Y are exactly Σ1

1–subsets of Y in the effective Lusin
hierarchy on Y. These results give a rise on next ensuing research directions:

– Investigations of bounds on the descriptive complexity of the images of total
computable functions over computable Polish spaces. We make a conjecture
that bounds will be different for particular classes of computable Polish spaces.
For example, it is easy to see that for the total computable real functions, the
images range over intervals of special kind.

– Generalisations of EDST on computable Polish spaces to EDST on the wider
class of effective topological spaces. One of the promising candidates could be
effectively enumerable topological spaces with point recovering.
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Abstract. We present a Coq mechanization of an inductive proof of Kruskal’s
tree theorem on Well Quasi Orders and we discuss the computational con-
tent of that theorem.

Well Quasi Orders (WQO) are an important class of quasi orders (reflexive and
transitive relations) which moreover satisfy the property of being well:

A binary relation R over set/type X is Well if any infinite sequence s :
N→ X contains a good pair, i.e. i < j such that R(si, sj)

But there are numerous classically equivalent characterizations of that property,
see [1] for instance. WQO are stable under several constructs as exemplified by
Dickson’s lemma, the finite sequence theorem, Higman’s lemma, Higman’s theorem
and Kruskal’s tree theorem. Nachum Dershowitz decisively used Kruskal’s tree
theorem in Computer Science to show the termination of recursive path orderings.
But WQOs can be used to show termination properties in a much larger contexts,
see [5] for instance.

The Kruskal tree theorem states that the class of WQOs is stable under the
tree homeomorphic embedding:

If ≤ is a WQO then embed_tree_homeo(≤) is a WQO.

One particular case of that theorem is Vazsonyi’s conjecture: in every infinite set S
of undecorated finite trees, there is a pair t1 6= t2 ∈ S of trees such that t1 embeds
into t2. Solving that conjecture was certainly one of the main motivations behind
the tree theorem.

There are many classical proofs of the tree theorem, including J.B. Kruskal’s
original proof. Among them, the most well known is the “short proof” of Crispin
Nash-Williams based on the minimal bad sequence argument. That proof typically
uses the excluded middle and the axiom of choice. It has been implemented in
Isabelle/HOL by Christian Sternagel [3].

Contrary to classical proofs, there are few instances of intuitionistic proofs for
Kruskal’s tree theorem. Some require the assumption that the ground relation
is decidable (e.g. [1, 2]). Veldman’s [4] is the only published proof that does not
require that decidability property, but it requires Brouwer’s thesis. Moreover, no
intuitionistic proof had been mechanized before.

The difficulty behind instuitionistic/constructive proofs of Kruskal’s tree the-
orem is that proofs based on the minimal bad sequence argument typically uses
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the excluded middle and the axiom of choice. According to Veldman [4], Kruskal’s
original proof was much more intuitionistic in spirit. But it is also much longer.
Another important obstacle is the following: the several classically equivalent defini-
tions of the notion of WQO are (for most of them) not intuitionistically equivalent.
Hence, the statement of the theorem depends (intuitionistically) on the choice of a
particular definition of WQO, mostly of the Well property.

The inductive and type theoretical proof we have developed shows that a suit-
able intuitionistic formulation of Well is the notion of Almost Full relation as defined
by Thierry Coquand [5] (there is also an intuitionistically equivalent formulation in
terms of Bar inductive predicates). Hence, we prove the following inductive Kruskal
tree theorem:

If a relation R is almost full then so is embed_tree_homeo(R)

From that theorem, we can intuitionistically derive Vazsonyi’s conjecture: we keep
the full power of Kruskal’s theorem in that intuitionistically formulation.

Our proof follows the pattern of Veldman’s [4] intuitionistic proof but the in-
tuitionistic set-theoretic context is replaced by inductive type theory. As we use
Coquand inductive formulation of almost full relation as a substitute of the well
property, the Brouwer’s thesis axiom used by Veldman is not necessary anymore:
our proof is axiom free. We discuss the computational content of the almost full
predicate and of the intuitionistic Kruskal tree theorem.
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Abstract. Algorithmic dimensions quantify the algorithmic information
density of individual points and may be defined in terms of Kolmogorov
complexity. This work uses these dimensions to bound the classical Haus-
dorff and packing dimensions of intersections and Cartesian products of
fractals in Euclidean spaces. This approach shows that a known intersection
formula for Borel sets holds for arbitrary sets, and it significantly simplifies
the proof of a known product formula. Both of these formulas are promi-
nent, fundamental results in fractal geometry that are taught in typical
undergraduate courses on the subject.

Classical fractal dimensions, among which Hausdorff dimension [9] is the most
important, refine notions of measure to quantitatively classify sets of measure 0. In
2000, J. Lutz [10] showed that Hausdorff dimension can be simply characterized us-
ing betting strategies called gales, and that this characterization can be effectivized
in order to quantitatively classify non-random infinite data objects. This effective
Hausdorff dimension and other, related algorithmic dimensions have been applied
to multiple areas of computer science and have proven especially useful in algorith-
mic information theory [8, 15, 5].

The connection between algorithmic and classical dimensions has more recently
been exploited in the other direction, i.e., to apply algorithmic information theoretic
methods and intuition to classical fractal geometry (e.g., [16, 1]). A point-to-set
principle of J. Lutz and N. Lutz [11] characterizes the classical Hausdorff dimension
of any set in Rn in terms of the algorithmic dimensions of its individual points.

In the same work, J. Lutz and N. Lutz showed that this principle gives rise to a
new, pointwise technique for dimensional lower bounds, and, as a proof of concept,
used this technique to give an algorithmic information theoretic proof of Davies’s
1971 [4] theorem stating that every Kakeya set in R2 has Hausdorff dimension 2.
This bounding technique has since been used by N. Lutz and Stull [12] to make
new progress on a problem in classical fractal geometry by deriving an improved
lower bound on the Hausdorff dimension of generalized Furstenberg sets, as defined
by Molter and Rela [14].

The same algorithmic dimensional technique is applied in this work to bound
the dimensions of intersections and products of fractals. Most significantly, we

? Research supported in part by National Science Foundation Grant 1445755.
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Fig. 1. Let E and F each be Koch snowflakes, which have Hausdorff dimension log3 4 ≈
1.26. Left: For almost all z, the intersection E ∩ (F + z) has Hausdorff dimension at most
2 log3 4−2 ≈ 0.52. Right: For a measure zero set of translations, the Hausdorff dimension
of the intersection may be as large as log3 4. Note that Koch curves are Borel sets, so the
new generality given by Theorem 1 is not required for this example.

extend the following intersection formula, previously shown to hold when E and F
are Borel sets [6], to arbitrary sets E and F .1

Theorem 1 For all E,F ⊆ Rn, and for almost every z ∈ Rn, dimH(E∩(F +z)) ≤
max{0,dimH(E × F )− n}, where F + z = {x + z : x ∈ F}.

This approach also yields a simplified proof of the following known product formula
for general sets.

Theorem 2 (Marstrand [13]) For all E ⊆ Rm and F ⊆ Rn, dimH(E)+dimH(F ) ≤
dimH(E × F ).

We use symmetric arguments to derive the known corresponding statements about
packing dimension [18, 7], a formulation of fractal dimension that was developed
independently by Tricot [18] and Sullivan [17] and is dual to Hausdorff dimension.
These results are included here to showcase the versatility of this technique and its
ability to capture the exact duality between Hausdorff and packing dimensions.
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2 Departamento de Informática e Ingenieŕıa de Sistemas, Instituto de Investigación en
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In 1909 Borel [3] defined a real number α to be normal in base b (b ≥ 2) if,
for every m ≥ 1 and every length-m sequence w of base-b digits, the asymptotic,
empirical frequency of w in the base-b expansion of α is b−m. Borel defined α to be
absolutely normal if it is normal in every base b ≥ 2. (This clearly anticipated the
fact, proven a half-century later, that a real number may be normal in one base
but not in another [5, 13].) The recent book [4] provides a good exposition of the
many aspects of current research on normal numbers.

The work reported here [11] concerns a relatively new problem, namely, the
complexity of efficiently computing a real number that is provably absolutely nor-
mal. Sierpinsky [14], Lebesgue [10], and Turing [15, 1] gave very inefficient con-
structions of absolutely normal numbers, but it was only in 2013 that Becher,
Heiber, and Slaman [2] published an algorithm that computes an absolutely nor-
mal number in polynomial time. Specifically, this algorithm computes the binary
expansion of an absolutely normal number x, with the nth bit of x appearing after
O(n2f(n)) steps for any computable unbounded nondecreasing function f . (Un-
published polynomial-time algorithms for computing absolutely normal numbers
were also announced independently by Mayordomo [12] and Figueira and Nies [7,
8] at about the same time.)

In this work we present a new algorithm that provably computes an absolutely
normal in nearly linear time. Our algorithm computes the binary expansion of an
absolutely normal number x, with the nth bit of x appearing after O(npolylog(n))
steps. The term “nearly linear time” was introduced by Gurevich and Shelah [9].
In that paper they showed that, while linear time computability is very model-
dependent, nearly linear time is very robust. For example, they showed that ran-
dom access machines, Kolmogorov-Uspensky machines, Schoenhage machines, and
random-access Turing machines share exactly the same notion of nearly linear time.

The novelty of our algorithm is its use of the Lempel-Ziv parsing algorithm to
achieve its nearly linear time bound. For each base b ≥ 2, we use a martingale (bet-
ting strategy) that employs the Lempel-Ziv parsing algorithm and is implicit in the
work of Feder [6]. This base-b Lempel-Ziv martingale succeeds exponentially when
betting on the successive digits of the base-b expansion of any real number that
is not normal in base b. Our algorithm simultaneously computes and diagonalizes
against (limits the winnings of) a martingale that incorporates efficient proxies of
all these martingales, thereby efficiently computing a real number that is normal
in every base.
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It is well known that the classical different characterizations of real numbers
may no longer be equivalent in a constructive foundation due to the absence of
choice principles including countable choice.

We will show that this is even more true in the Minimalist Foundation, for
short MF, ideated in [8] in joint work with Giovanni Sambin and completed into
a two-level formal system in [2], due to its strictly predicative nature which makes
it compatible with the most relevant classical and constructive foundations in the
literature.

We recall that the two-level structure of MF includes: an intensional level
suitable as a base for a proof-assistant to formalize its proofs and extract their
computational contents, an extensional level formulated in a language as close as
possible to that of ordinary mathematics and, finally, an interpretation of the latter
in the former by means of a quotient model showing that the extensional level
has been obtained by abstraction from the intensional one according to Sambin’s
forget-restore principle in [11].

Both levels of MF are represented as a dependent type theory in the style of
Martin-Löf’s one, respectively in [9, 4]. In particular it is worth noting that the
intensional level of MF provides a predicative (and of course still constructive)
version of the Calculus of Inductive Constructions on which the French proof-
assistant Coq is based.

It should be clear from the described two-level structure that to build a model
of the extensional level of MF is enough to build a model for its intensional level.
Hence, by building a model for the intensional level of MF, we show that in the
extensional level of MF the collection of real numbers as Dedekind sections or
as Cauchy sequences in terms of functional relations do not form a set but only a
collection. This is contrary to what happens in the model with other descriptions of
real numbers such as Bishop’s regular Cauchy sequences defined as suitable typed-
terms. The key point is that typed-terms between natural numbers are interpreted
as computable sequences while the interpretation of number-theoretic functional
relations also includes non-computable ones.

Our model is placed within the subcategory of assemblies of Hyland’s Effective
Topos [1]. In particular it makes use of suitable properties of their boolean quasi-
topos structure studied in joint work with Fabio Pasquali and Giuseppe Rosolini by
employing the categorical notion of elementary quotient completion in [7, 6] (which
was introduced to study the properties of the quotient model used in MF).

The fact that real numbers do not form a set in the extensional level of MF is
related to the fact that both the axiom of unique choice and the axiom of choice,
even restricted to relations on natural numbers, are not valid in both levels of MF,
as one can show directly by also using Streicher’s model in [10].
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As shown in [3] this fact is in turn related to the fact that the rule of choice
and the rule of unique choice are also not generally valid in both levels of MF.

In particular the non validity of the rule of unique choice implies that the
representation of computable functions via typed terms of the intensional level of
MF is strictly stronger than their strong representation via functional relations.

From these facts we conclude that in order to extract programs from proofs in
MF, in particular about real numbers, we need to interpret its intensional level in
a realizability model like that in [5], or in a stronger theory validating at least the
rule of unique choice like Martin-Löf’s type theory in [9].
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subset theory. In G. Sambin and J. Smith, editors, Twenty-five years of construc-
tive type theory, Proceedings of a Congress held in Venice, October 1995, pages
221–244. Oxford U. P., 1998.

43



A stratified pointfree definition of probability via
constructive natural density

S. Maschio

University of Padova, Italy

Although Kolmogorov’s axiomatic approach to probability is now considered
standard, it has some disadvantages, in particular it is generally not very informa-
tive about how to concretely assign a probability to an event. There are at least
other three historically relevant approaches to probability: one is Bernoulli’s and
Laplace’s classical approach (shortly favourable cases

possible cases ), the second is the frequentist

approach (the probability is the limit of frequencies of success in a sequence of
iterated trials), the third is de Finetti’s subjective approach. These four paradigms
overlap, but unfortunately don’t coincide.

Here we give a constructive (à la Bishop, [1]) account of the frequentist ap-
proach, by means of natural density ([4]) and then we try to propose a general
definition of probability structure, being authentically abstract and pointfree, but
at the same time containing some information about the procedure for “concretely”
assigning the probability. Such a structure can be presented in a type-theoretical
framework, such as the Minimalist Foundation in [3, 2] and essentially consists of
three layers: there is a Heyting algebra P, which must be understood as the al-
gebra of all potential events. P contains a Boolean subalgebra B which must be
understood as the algebra of the events for which an evaluation of probability can
be easily given (one could call these events regular or deterministic). In between
these two algebras there is a third structure E , the set of actual events, on which a
probability is defined (which coincides with the evaluation on events in B ).

This shape can be recognized in the following two examples from classical math-
ematics. The first is the definition of a uniform probability measure on a bounded
interval [a, b] of the real line: first one assigns a probability to intervals (and hence
to Borel subsets in B([a, b])). Then one defines an outer measure on all potential
events in P([a, b]) and finally carves Lebesgue measurable sets (the actual events)
out of P([a, b]) using Caratheodory construction. The second example is the follow-
ing: suppose one already has a Kolmogorov probability space (Ω,B,P). One can
consider fuzzy sets f : Ω → [0, 1] as potential events and can define actual events
as those which are integrable, extending P by defining P(f) as

∫
Ω
f dP.

Let us consider now a constructive account of the frequentist approach via
natural density. A sequence of trials can be represented as a sequence

xn ∈ {0, 1} [n ∈ N+]

For every such a sequence x one can define a sequence Φ(x) of rational numbers

Φ(x)(n) :=

∑n
j=1 xn

n

i. e. the sequence of success rates in the first n trials.
We then define an actual event as a pair (x, α) where x is a sequence of trials and
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α is a strictly increasing sequence of natural numbers such that

|Φ(x)(α(n) + k)− Φ(x)(α(n) + h)| < 1

n

[
n ∈ N+, k ∈ N, h ∈ N

]

It is an immediate consequence of the previous condition that for every such an
event (x, α) the sequence Φ(x) ◦ α is a Bishop real and that for every pair (x, α),
(y, β) of events with x = y, one has that Φ(x) ◦ α and Φ(y) ◦ β are equal Bishop
reals. Hence one can define a function P from the set of events to Bishop reals
as P(x, α) := Φ(x) ◦ α. This gives rise to a constructive account of frequentist
probability. If we write x ∈ E as a shorthand for “there exists α such that (x, α) is
an event”, one can constructively prove that the following rules are satisfied:

0 ∈ E P(0) =R 0

x ∈ E
¬x ∈ E

x ∈ E
P(¬x) =R 1− P(x)

x ∈ E y ∈ E x ∧ y = 0

x ∨ y ∈ E
x ∈ E y ∈ E x ∨ y ∈ E x ∧ y ∈ E

P(x ∨ y) + P(x ∧ y) =R P(x) + P(y)

x′ ≤ x x′ ∈ E x ∈ E
P(x′) ≤R P(x)

x′ ≤ x x ∈ E P(x) = 0

x′ ∈ E
If ρ and π are finite lists of 0s and 1s, one can define a sequence of trials

[[ρ, π]] as the sequence of trials which begins with ρ and then consists of a periodic
repetition of π. Such sequences can be understood as representing regular events
or events which can be evaluated following the classical approach (up to a finite
number of errors). They form a boolean algebra B included in E on which the
probability coincides with the probability given by the classical approach to π, i.

e. P(exp(α, π)) =
∑`(π)
i=1 πi
`(π) .

In this constructive example we can recognize the three layers structure. We
can hence propose a notion of probability structure as a triplet (P, E ,B) where P
is a Heyting algebra, B is a Boolean subalgebra and B ⊆ E ⊆ P for which the rules
above for E are satisfied. Both the previous examples satisfy these rules.
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The Isomorphism Problem for computable structures is well-known in com-
putable model theory: for a particular class D of computable structures, each given
by an index e for the characteristic function ϕe of its atomic diagram, the Isomor-
phism Problem is the set of those pairs (e0, e1) such that the structures with indices
e0 and e1 are isomorphic. In many cases, this problem is Σ1

1 -complete, which is as
hard as it can possibly be: this holds when D is the class of all computable graphs,
for example, or all computable groups, or all computable fields. These results were
discovered mainly by Friedman and Stanley in [4], although others have enriched
them since then as well. Different classes of computable structures have simpler
isomorphism problems. For computable equivalence structures, the isomorphism
problem is Π0

4 -complete, as it is for for computable torsion-free abelian groups,
while for computable subfields of the algebraically closed field Q, it is Π0

2 -complete.
Details appear in [1–3, 5].

Here we investigate what happens when we drop the requirement that the
structures be computable. Our structures will all still be countable, with domain
ω, but instead of naming a structure by the characteristic function of its atomic
diagram (or by an index for that function), we will treat the atomic diagram itself
as the structure, viewing it as a real number, i.e., as an element of Cantor space 2ω.
The classes D of interest to us will now include the class of all countable torsion-
free abelian groups with domain ω, for example, or the class of all equivalence
structures with domain ω, or similar classes. (An equivalence structure consists of
nothing more than an equivalence relation E on the domain, in the language with
E and equality.) Such a class D defines a certain subclass of Cantor space, and we
identify D with that subclass. The subclass itself is not usually an open set; its
complexity is usually determined by the complexity of the axiom set (if any) for
structures in D, such as the axioms for torsion-free abelian groups. In some cases,
these axioms may be Lω1ω sentences: the class of all subfields of Q, for example, is
defined by the axioms for a field of characteristic 0 along with the (infinitary Π2)
statement that every element satisfies some polynomial over Q.

A class D, still viewed as a subclass of 2ω, inherits the subset topology from 2ω.
Considering the isomorphism problem for D, we then examine the quotient D/∼=,
in which elements of D defining isomorphic structures are identified. D/ ∼= now
bears the quotient topology relative to D: a subset U of D/∼= is a set of ∼=-classes,

? The author was supported by Grant # DMS – 1362206 from the N.S.F., and by grants
from the PSC-CUNY Research Award Program and the Queens College Research En-
hancement Fund.
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and it is open in D/∼= if and only if its union is an open subset of D. This means
that, for U to be open, every element A of an ∼=-class in U must have an initial
segment σ (that is, a finite fragment of the atomic diagram of A) such that all
elements of D extending σ belong to ∼=-classes in U . We write Uσ for the subset
of 2ω containing all extensions of σ, and refer to Uσ ∩ D as a neighborhood of A
within D. Likewise, (Uσ ∩D)/∼= is a neighborhood of the ∼=-class of A in D/∼=.

The challenge now is to recognize ∼= on D as one of the standard Borel equiv-
alence relations on 2ω or on ωω, up to homeomorphism. Often this dictates the
addition of certain definable predicates to the language, and we regard these pred-
icates as providing a classification of D up to isomorphism. For example, for the
class Alg0 of subfields of Q (with domain ω), we can add, for each n > 1, an n-ary
relation Rn defined by

Rn(a0, . . . , an−1) ⇐⇒ (∃x) xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

(It is equivalent to add a list of those p ∈ Q[X] which have a root in the field.)
The class Alg∗0 of subfields of Q in this expanded language, modulo isomorphism, is
homeomorphic to the equality relation on Cantor space itself: there is a computable
function (of type 2, i.e., given by a Turing functional) mapping Alg∗0/∼= bijectively
onto 2ω, for which the inverse is also computable. Since computable functions are
continuous, this is a homeomorphism. The intriguing aspect is that the reduct
Alg0/

∼=, back in the plain language of fields, is not homeomorphic to equality on
2ω: the ∼=-class of Q itself is contained in no open set except the entire space,
whereas the ∼=-class of Q is contained in every nonempty open set. This reflects
the primality of Q and the universality of Q in Alg0, and leads us to conclude that
the relations Rn are essential to a nice classification of Alg0 up to isomorphism.
We plan to discuss the situation for other classes D in which isomorphism is an
arithmetic relation; these include the class of finite-branching trees, that of torsion-
free abelian groups, that of algebraically closed fields of characteristic 0, and that
of equivalence structures on ω.
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Abstract. We discuss a new connection between Nonstandard Analysis
and computability theory, pioneered in [10], based on the following two
intimately related topics.

(T.1) A basic property of Cantor space 2N is Heine-Borel compactness: Any
open cover of 2N, has a finite sub-cover. A natural question is: How
hard is it to compute such a finite sub-cover? We make this precise by
analysing functionals that given g : 2N → N, output 〈f0, . . . , fn〉 in 2N

such that the neighbourhoods defined from fig(fi) for i ≤ n cover 2N.
The special and weak fan functionals are central objects in this study
and exhibit extreme computational hardness.

(T.2) A basic property of 2N in Nonstandard Analysis is Abraham Robin-
son’s nonstandard compactness, i.e. that every binary sequence is ‘in-
finitely close’ to a standard binary sequence. We analyse the strength of
this nonstandard compactness property in the spirit of Reverse Mathe-
matics, which turns out to be intimately related to the computational
properties of the special and weak fan functionals.

We connect the topics (T.1) and (T.2) to mainstream mathematics by de-
riving the special fan functional from slight variations of Tao’s notion of
metastability ([13]). Based on the latter observation, we establish that many
mathematical theorems naturally have ‘metastable versions’ which involve
functionals of extreme computational hardness. We also discuss exceptions,
like the infinite pigeon hole principle, whose metastable versions stay within
Gödel’s T .

Metastability, nonstandard compactness, and the special fan
functional

Introduction

We introduce the special fan functional Θ and sketch its surprising properties,
including its connection to Tao’s metastability ([13]) and nonstandard compactness
as in Robinson’s theorem ([4]*p. 42). We use Kleene’s schemes S1-S9 ([7]) as our
notion of computability.

As to history, Θ was introduced in [11]*§3, and its computational properties are
studied in [10, 9]. Intuitively speaking, Θ computes a cover for Cantor space, i.e.
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on input g : 2N → N, Θ outputs 〈f0, . . . , fn〉 in 2N such that the neighbourhoods
defined from fig(fi) for i ≤ n cover 2N, as follows:

(∀T 1 ≤1 1, g2)
[
(∀α1 ∈ Θ(g))(∃n ≤ g(α))(αn 6∈ T )→ (∃k0)(∀β1 ≤1 1)(βk 6∈ T )

]
,

(SCF(Θ))
where T 1 is a variable reserved for trees. Any functional Θ satisfying SCF(Θ)
is called a special fan functional, i.e. this functional is not unique. Despite its
simple definition, no type two functional can compute any Θ, while the functional
∃3 corresponding to full second-order arithmetic can compute a functional Θ. The
combination of any Θ and the ‘arithmetical comprehension’ functional ∃2 computes
a realiser for ATR0, the fourth ‘Big Five’ system of Reverse Mathematics (See
[12]*V).

Furthermore, the combination of any Θ and the Suslin functional S2, which
corresponds to the fifth ‘Big Five’ system Π1

1 -CA0 ([12]*VI), computes Gandy’s
Superjump ([3]). The combination Θ + S2 exists at the level of Π1

2 -CA0, the outer
limits of ordinal analysis, and proves the consistency of Π1

1 -CA0, by way of foun-
dational result, as Θ yields a conservative extension of PRA.

The previous results suggest that Θ is an interesting object of study in com-
putability theory. As it happens, Θ was first discovered in [11] by applying the
proof translation from [14] to the nonstandard compactness of Cantor space, which
is the nonstandard counterpart of weak König’s lemma. Hence, there is a funda-
mental connection between the Reverse Mathematics of Nonstandard Analysis and
(higher-order) computability theory. Surprisingly, we can also connect Θ to the
mathematical mainstream, Tao’s notion of metastability in particular. To this end,
we study the ‘textbook’ example of metastability involving the unit interval from
[1]*§1.

Example 1 (Metastable convergence) The monotone convergence theorem (MCT)
states that any non-decreasing sequence in the unit interval converges to a limit ;
such a sequence is hence a Cauchy sequence for which the usual ‘epsilon-delta’
definition (for a sequence a(·) of reals) is as follows:

(∀ε >R 0)(∃N0)(∀n0,m0 ≥ N)(|an − am| ≤ ε). (1)

Given classical logic, (1) is equivalent to the following ‘metastable’ version:

(∀ε >R 0, F )(∃M0)(∀n,m ∈ [M,F (M)])(|an − am| ≤ ε). (2)

While these two formulas are equivalent, their computational behaviour is quite
different: On one hand, there is no computable way of obtaining an upper bound
on N0 in the usual definition (1). On the other hand, an upper bound for M0 as

in (2) is given by F d
1
ε e+1(0), which is the result of iterating F for d 1εe + 1-many

times and then evaluating at 0. In particular, M0 as in (2) is one of the values in

the finite sequence 〈0, F (0), F (F (0)), . . . , F d
1
ε e+1(0)〉. Thus, we obtain:

(∃θ(0×1)→0∗)(∀k0, F, a(·) ∈ I([0, 1]))(∃M ∈ θ(k, F ))(∀n,m ∈ [M,F (M)])(|an − am| ≤ 1
k )

(3)

where ‘a(·) ∈ I([0, 1])’ means that a(·) is a non-decreasing sequence in [0, 1].
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In Example 1, we observed a ‘computational’ advantage of metastability (2) over
(1): By introducing F as in (2), we reduce the underlined pair of quantifiers of the
form ‘∃ ∀’ in (1) to the underlined ‘∃’ quantifier in (2) as the universal quantifier
(involving n,m) in (2) is bound by F (M), and hence may be neglected. Thanks to
this reduction in quantifier complexity, there is a finite sequence θ(k, F ) which is
independent of the sequence a(·) as in (3), i.e. we also obtain highly uniform com-
putational information. This metastability trade-off has been observed in general:

Whereas in general noneffective proofs of convergence statements [. . . ]
might not provide a (uniform) computable rate of convergence, highly uni-
form rates of metastability can under very general conditions always be
extracted using tools from mathematical logic [. . . ]. ([6]*p. 1090)

In the next section, we investigate whether this trade-off can be made for a
slight variation of (1) and (2) involving the definition of limit convergence instead
of the definition of Cauchy sequence (1).

Metastability and the monotone convergence theorem

In this section, we introduce MCTmeta, which derives from MCT by applying the
metastability trade-off to a slight variation of (1), namely the definition of limit
convergence. We study the computational behaviour of MCTmeta, which turns out
to be surprisingly different from (3). In particular, Θ emerges from MCTmeta.

We shall consider, instead of the definition of Cauchy sequence as in (1), the
following definition of ‘limit with rate of convergence’ for x(·) ∈ I([0, 1]):

(∃x1 ∈ [0, 1], g1)(∀k0, N0)(N ≥ g(k)→ |x− xN | ≤ 1
k ), (4)

Now, it is well-known that the limit x and rate of convergence g as in (4) are
not computable from the sequence x(·) (See [12]*§1.9). Hence, let us modify the
underlined quantifier pair in (4) in the same way as in metastability in (2).

(∀G2)(∃x1 ∈ [0, 1], g1)(∀k0, N0 ≤ G(x, g))(N ≥ g(k)→ |x− xN | ≤ 1
k ), (5)

In the same way as for (1) and (2), we have reduced the underline pair of quantifiers
in (4) to the underlined quantifier in (5) as the bounded quantifier (involving k,N)
in (5) again ‘does not count’.

Now let us write down the associated version of (3) as follows:

(∃M2→1∗)(∀G2,x0→1
(·) )

[
(∀n0)(0 ≤ xn ≤ xn+1 ≤ 1) (MCTmeta)

→ (∃x1, g1 ∈M(G))(∀k,N ≤ G(x, g))(N ≥ g(k)→ |x− xN | ≤ 1
k )
]
,

which expresses that a ‘metastable’ limit and rate of convergence can be computed
by M , and this independently of the choice of sequence x(·), as suggested by the
metastability trade-off. Thus, MCTmeta is just (3) but with ‘metastability’ as in (2)
replaced by ‘metastable limit’ as in (5). A natural question is then: Is the functional
from MCTmeta equally elementary as θ from (3)?
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Now, that classically equivalent definitions behave differently in constructive or
computable mathematics, is well-known. In this vein, the functional from MCTmeta

turns out to have quite strange computability theoretic properties, akin to the
special fan functional, as we establish in the next theorems. Let MCTmeta(M) be
MCTmeta with the leading existential quantifier removed and let µ2 be Feferman’s
search operator ([2]) which yields a conservative extension of ACA0.

Theorem 2 (ZFC) A functional M satisfying MCTmeta(M) can be computed from
∃3 or Θ + µ2. No type two functional can compute such a functional M . Any
functional M as in MCTmeta(M) computes Θ via a term of Gödel’s T .

Hence, ∃2 cannot compute M from MCTmeta. However, by definition, MCTmeta is
at least as strong as the Big Five system ACA0, and the former has quite strange
Reverse Mathematics properties in the sense of Kohlenbach’s higher-order Reverse
Mathematics as in [5].

Theorem 3 RCAω
0 + (µ2) proves (∃Θ3)SCF(Θ) ↔ MCTmeta while RCAω

0 + WKL
does not.

Let UATR be ATR0 where a functional computes the set obtained via transfinite
recursion.

Theorem 4 RCAω
0 + (∃Θ)SCF(Θ) proves UATR ↔ (µ2) while RCAω

0 + WKL does
not.

Recall that a small number of equivalences in Reverse Mathematics are known
to require a base theory stronger than RCA0 and Hirschfeldt has asked whether
there are more such equivalences (See [8]*§6.1). The previous theorem provides an
affirmative, though perhaps unexpected, answer.
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The Minimalist Foundation
and its impact on the working mathematician
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Mathematics, in my view, is a human creation, obtained through a process of
abstraction of mathematical concepts from reality. It is a result of evolution rather
than the description of an absolute truth independent of us. Its effectiveness and
objectivity are reached through a dynamic interaction between abstraction and
application to reality. I have been developing such a perspective on mathematics,
called Dynamic Constructivism, both in the actual development of mathematics
[8] and its foundations [4–7] for over 25 years.

To obtain some metamathematical results (normalization, program-extraction,
realizability interpretation) we have introduced a specific formal system called Min-
imalist Foundation (MF) [3, 1], which corresponds well to dynamic constructivism.

So, adopting dynamic constructivism in practice means doing mathematics in
MF, or equivalently adhering to the following four principles.

1. Cultivate pluralism in mathematics and foundations. Different styles in ab-
straction, which means different foundations, produce different kinds of mathe-
matics and should be respected. In particular, constructivism does not coincide
with constructivization of classical mathematics; at least half of the work is to find
proper definitions, corresponding to a different way of abstracting.

MF is compatible with the most relevant foundations (constructive type theory,
calculus of construction, internal theory of toposes, axiomatic set theory, both
classical and constructive, Feferman’s explicit mathematics) in the sense that each
of them is obtained as an extension of MF.

2. Accept open notions and incomplete theories. Since the construction of math-
ematics is a never-ending process and nothing is given in advance, whatever makes
the assumption that such a process can be blocked is rejected, such as a fixed
universes of all sets, or of all subsets, or of all propositions.

Contrary to the common view, the fact that many notions are open-ended,
intrinsically incomplete is not a limitation but a source of a more relaxed view
and a deeper understanding. For instance, consistency of MF becomes a theorem,
contrary to the case of axiomatic set theory ZFC.

3. Preserve all conceptual distinctions (no reductionism). When mathematics
ceases to exist by itself, all its achievements (not only theorems or solutions to
problems but also definitions, intuitions, conceptual distinctions, etc.) are the result
of human struggle and thus become precious and must be kept, without reducing
all to a single notion, like that of set.

As a consequence, many more primitive notions than usual are kept on stage. In
particular, we will have the notions of set, collection and proposition, also in their
form under assumptions (which produce the notions of operation, subset, relation,
function, etc.).
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4. Preserve all different levels of abstraction. It is a fact of life that commu-
nication can have different levels of reference, which in mathematics means the
distinction between language and metalanguage, and different levels of abstrac-
tion, such as the computational, set-theoretic and algebraic modes.

For instance, intensional aspects live together with extensional ones, in the sense
that MF has two levels of abstraction. The extensional level is as close as possible
to the practice of constructive mathematics, while the intensional level admits a
realizability interpretation [2]. The two levels are linked in accordance with the
forget–restore principle, as proved in [1].

Contrary to common expectations (which push towards the strongest founda-
tional theories possible), adopting MF has shown to be sufficient to do mathematics.
It is even more interesting, and unexpected, that the actual development of topol-
ogy over MF (see [8]) has revealed several deep structures which went unnoticed
before and which will be listed and illustrated in second part of the actual talk.

In particular, it will be shown that absence of axiom of choice (and hence the
distinction between operation and function) allow to conceive choice sequence (or
streams) as ideal points of a pointfree Baire space.
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of Logic, Epistemology and the Unity of Science, pages 69–85. Springer, 2012.

8. G. Sambin. Positive Topology and the Basic Picture. New structures emerging from
constructive topology. Oxford University Press, to appear.

54



Computing with infinite data via proofs

Helmut Schwichtenberg

LMU Munich, Germany

A real number can be represented as a Cauchy sequence (an)n of rationals
together with a Cauchy modulus M satisfying

|an − am| ≤
1

2p
for n,m ≥M(p).

Arithmetical operations on real numbers x, y are defined by

cn L(p)

x+ y an + bn max
(
M(p+ 1), N(p+ 1)

)

−x −an M(p)
|x| |an| M(p)
x · y an · bn max

(
M(p+ 1 + py), N(p+ 1 + px)

)

1
x for |x| ∈q R+

{
1
an

if an 6= 0

0 if an = 0
M(2(q + 1) + p)

where 2px is the upper bound of x provided by the Archimedian property.
A computationally more interesting representation of real numbers is to view

them as streams of signed digits Sd := {−1, 0, 1}. The first task then is to define
the arithmetical operations on these infinite data. This can be done directly, but
it is a non-trivial task; see Wiedmer [7] and Ciaffaglione & di Gianantonio [4].
Here we consider an alternative, where the stream algorithms are extracted from
proofs via realizability. Advantages are (i) that we can deal with mathematics (a
constructive extension of real analysis) rather than computer science, and (ii) that
(in case one uses a proof assistant to generate formal machine checked proofs) we
can automatically verify the extracted programs.

For simplicity we work in the interval [−1.1] (hence take the average function
x+y
2 instead of addition) and consider proofs of

∀ncx,y(x, y ∈ coI → x+ y

2
∈ coI),

∀ncx,y(x, y ∈ coI → x · y ∈ coI),

∀ncx,y(x, y ∈ coI → 1

4
≤ y → x

y
∈ coI).

Here coI is the greatest fixed point of an operator

Φ(X) := {x | ∃rd,x′(d ∈ Sd ∧ x′ ∈ X ∧ x =
x′ + d

2
) }

satisfying the axiom

X ⊆ Φ(coI ∪X)→ X ⊆ coI (coinduction).
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A witness of the proposition x ∈ coI then is a stream representing x, and conse-
quently the computational content of the three proofs will be stream algorithms for
the respective arithmetical operations. Notice that the reals x, y are not needed as
input data of the algorithms; we therefore use the non-computational ∀nc universal
quantifier to bind them. For the average function such algorithms were informally
obtained by Berger and Seisenberger [1] and formally by Miyamoto and Schwicht-
enberg [5]. Multiplication has been formally dealt with in Schwichtenberg [6]. The
present paper reports on joint work with Hideki Tsuiki and Franziskus Wiesnet
concerning division.
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