
'

&

$

%

The Computational Content of the
Constructive Kruskal Tree Theorem

Dominique Larchey-Wendling

TYPES team

LORIA – CNRS

Nancy, France

http://www.loria.fr/~larchey/Kruskal

Continuity, Computability, Constructivity -

From Logic to Algorithms, CCC 2017

1

'

&

$

%

Well Quasi Orders (WQO) 1/2

• Important concept in Computer Science:

– strenghtens well-foundedness, more stable

– termination of rewriting (Dershowitz, RPO)

– size-change termination, terminator (Vytiniostis, Coquand ...)

• Important concept in Mathematics:

– Dickson’s lemma, Higman’s lemma

– Higman’s theorem, Kruskal’s tree theorem

– Robertson-Seymour theorem (graph minor theorem)

– Unprovability result: Kruskal theorem not in PA (Friedman)

2

'

&

$

%

Well Quasi Orders (WQO) 2/2

• for ≤ a quasi order over X: reflexive & transitive binary relation

• several classically equivalent definitions (see e.g. JGL 2013)

– almost full: each (xi)i∈N has a good pair (xi ≤ xj with i < j)

– ≤ well-founded and no ∞ antichain

– finite basis: U = ↑U implies U = ↑F for some finite F

– {↓U | U ⊆ X} well-founded by ⊂

• many of these equivalences do not hold intuitionistically

3

'

&

$

%

WQOs are stable under type constructs

• Given a WQO ≤ on X, we can lift ≤ to WQOs on:

Higman lemma: list(X) with subword(≤)

Higman thm: btree(k,X) with emb product(≤) (any k ∈ N)

Kruskal theorem: tree(X) with emb homeo(≤)

• These theorem are closure properties of the class of WQOs

• Other noticable results:

Dickson’s lemma: (Nk,≤) is a WQO

Finite sequence thm: list(N) WQO under subword(≤)

Ramsey theorem: ≤1 and ≤2 WQOs imply ≤1 ×≤2 WQO

4

'

&

$

%

What Intuitionistic Kruskal Tree Theorem?

• The meaning of those closure theorems intuitionistically:

– depends of what is a WQO (which definition?)

– but not on e.g. emb homeo which has an inductive definition

• What is a suitable intuitionistic definition of WQO ?

– quasi-order does not play an important/difficult role

– should be classically equivalent to the usual definition

– should intuitionistically imply almost full

– intuitionistic WQOs must be stable under liftings

• Allow the proof and use of Ramsey, Higman, Kruskal... results

5

'

&

$

%

Intuitionistic formulations of WQOs 1/2

• Almost full relations (Veldman&Bezem 93)

– each (xi)i∈N has xi R xj with i < j

– works for Higman and Kruskal theorems (Veldman 04)

– uses stumps over N which require Brouwer’s thesis

• Bar induction (Coquand&Fridlender 93)

– bar extends (goodR) []

– works for the general Higman lemma (Fridlender 97)

• Well-foundedness (Seisenberger 2003)

– extends(−1) is well-founded on Bad(R)

– works for Higman lemma and Kruskal theorem

– requires decidability of R

6

'

&

$

%

Intuitionistic formulations of WQOs 2/2

• Almost full relations (Vytiniostis&Coquand&Wahlstedt 12)

– af(R) inductively defined

– works for Ramsey theorem

– intuitionistically equivalent to bar extends (goodR) []

• Seisenberger’s definition not equiv. to Coquand&Fridlender for

undecidable R

• Veldman&Bezem definition works for R over N (not over

arbitrary types) but requires Brouwer’s thesis

• Let us introduce

– bar inductive predicates

– Coquand et al. inductive definition of almost full

7

'

&

$

%

Bar inductive predicate, accessibility predicate

• Given T : X →X → Prop, x : X and Q : X → Prop

• Q bars x if every ∞ T -path from x meets Q

• x is accessible if every ∞ T -path from x meets 7→ False

• Inductive definitions (Prop or Type) are stronger (intui.)

Q x

bar T Q x

∀y, T x y→ bar T Q y

bar T Q x

∀y, T x y→ acc T y

acc T x

• Axioms (like Brouwer’s bar thesis) for equivalence

• Obviously: acc T x iff bar T (7→ False) x

8

'

&

$

%

Bar inductive predicate and the FAN theorem

• inductive FAN theorem: bar T Q x→ bar T ◦ ∀Q [x]

– for bar T : (X → Prop)→ (X → Prop)

– and monotonic Q: ∀x y, T x y→Q x→Q y

– T ◦ l m iff ∀y, y ∈ m→∃x, x ∈ l ∧ T x y (direct image)

– (∀Q) l iff ∀x, x ∈ l→Q x (finite quantification)

• for bart T : (X → Prop)→ (X → Type)

– FAN is not provable in this informative case

– the relation T ◦ hides the relation between y and x

– possible solution: restrict T ◦

9

'

&

$

%

Bar inductive predicate and list extensions

• We use bar T Q with T = extends (and Q = good R)

– extends l m iff m = :: l

– good R ll iff ll = l ++ b :: m ++ a :: r for some a R b

– good has an easy inductive definition, beware of snoc lists

– barl = bar extends : (listX → Prop)→ (listX → Prop)

Q l

barl Q l

∀x, barl Q (x :: l)

barl Q l

• barl (good R) [] iff iterated exts of [] meets a good list

• every infinite sequence contains a good pair (almost full)

10

'

&

$

%

The Informative FAN theorem (Fridlender)

• barlt = bart extends : (listX → Prop)→ (listX → Type)

Q l

barlt Q l

∀x, barlt Q (x :: l)

barlt Q l

• the list of choice sequences:

[x1; . . . ;xn] ∈ list expo [l1; . . . ; ln] ⇐⇒ x1 ∈ l1 ∧ · · · ∧ xn ∈ ln

• an informative instance of the FAN theorem (Q monotonic):

barlt Q []→ barlt (∀Q ◦ list expo) []

• Q is met uniformly among choices sequences

11

'

&

$

%

Inductive bars of decidable predicates

• bart is obviously stronger than bar

• but bar T Q l not enough to build bart T Q l

• however, it is sufficient when Q is decidable

(∀l, {Q l}+ {¬Q l})→∀l, bar T Q l→ bart T Q l

• if Q has a decision term then missing info. can be reconstructed

• also, bart Q x is equivalent to acc (u v 7→ T u v ∧ ¬Q u) x

• barlt (goodR) and barlt (goodR) equivalent when R decidable

12

'

&

$

%

Well-founded trees over a type X

• Well-founded trees wft(X), lfp of wft(X) = {?}+ X → wft(X)

? : unit

inl ? : wft(X)

g : X → wft(X)

inr g : wft(X)

• Given a branch f : N→X, compute its height:

- f(1 + ·) = x 7→ f(1 + x)

- ht(inl ?,) = 0

- ht(inr g, f) = 1 + ht(g(f0), f(1 + ·))
f1

f0

• wft(X) collects bounds for any sequence f : N→X

• Veldman’s stumps are sets of branches of trees in wft(N)

13

'

&

$

%

A well-founded tree for (N,≤)

• Property: ∀f : N→ N, ∃i < j < 2 + f0, fi ≤ fj

• In wft(N), we define Tn the tree of uniform height n:

– T0 = inl(?) and T1+n = inr(7→ Tn)

– for any f : N→ N, ht(Tn, f) = n

• And T≤ = inr(n 7→ T1+n)

T1+n

Tn

0

Tn

1

· · · Tn

i

T≤

T1

0

T2

1

· · · T1+i

i

• Hence ht(T≤, f) = 1 + ht(T1+f0 , f(1 + ·)) = 2 + f0

14

'

&

$

%

Computational content of inductive bar predicates

• recall wft(X) : Type inductivelly defined by

? : unit

inl ? : wft(X)

g : X → wft(X)

inr g : wft(X)

• bar securedby Q : wft(X)→ listX → Prop

– bar securedby Q (inl ?) l = Q l

– bar securedby Q (inr g) l = ∀x, bar securedby Q (g x) (x :: l)

• barlt Q l ⇐⇒ {t : wft(X) | bar securedby Q t l}

• t : wft(X) is the computational content of the barlt predicate

15

'

&

$

%

Coquand’s Almost full relations, step by step

1. Veldman et al.: ∀f : N→X, ∃i < j, fi R fj

2. Logically eq. variant: ∀f : N→X, ∃n, ∃i < j < n, fi R fj

3. Partially informative: ∀f : N→X,
{
n
∣∣ ∃i < j < n, fi R fj

}
4. Variant:

{
h : (N→X)→ N

∣∣ ∀f, ∃i < j < h(f), fi R fj
}

5. Variant:
{
t : wft(X)

∣∣ ∀f, ∃i < j < ht(t, f), fi R fj
}

6. Coquand et al.: is defined as an inductive predicate aft(R)

• the prefix of length ht(t, f) of f : N→X contains a good pair

• the computational content is (for every sequence f : N→X):

– a bound on the size of the search space for good pairs

– and it is not a good pair

16

'

&

$

%

Almost full relations, inductively

• For X : Type and R : X →X → Prop

• Lifted relation: x (R ↑ u) y = x R y ∨ u R x

– in R ↑ u, elements above u are forbidden in bad sequences

• full : rel2 X → Prop and aft : rel2 X → Type

∀x, y, x R y

fullR

fullR

aft R

∀u, aft(R ↑ u)

aft R

• af securedby : wft(X)→ rel2 X → Prop:

– af securedby(inl ?,R) = fullR

– af securedby(inr g,R) = ∀u, af securedby(g u,R ↑ u)

17

'

&

$

%

Almost full relations, equivalent characterizations

• these are intuitionistically “equivalent” (hold in Type, not Prop):

– aft R

–
{
t : wft(X)

∣∣ af securedby(t, R)
}

–
{
t : wft(X)

∣∣ ∀f, ∃i < j < ht(t, f), fi R fj
}

– barlt (good R) []

–
{
t : wft(X)

∣∣ bar securedby (good R) t []
}

–
{
t : wft(X)

∣∣ ∀f, good R [fn−1; . . . ; f0]
}

where n = ht(t, f)

• the tree t : wft(X) might be modified

• to establish aft R iff barlt (goodR) [], we prove

aft(R ↑ an ↑ . . . ↑ a1) iff barlt (goodR) [a1, . . . , an]

18

'

&

$

%

Almost full relations, some properties

• af t refl: if aft R then =X ⊆ R (iff in case X is finite)

• af t inc: if R ⊆ S and aft R then aft S

• af t surjective (easy but very useful):

– for f : X → Y → Prop, R : rel2 X and S : rel2 Y

– if f surjective: ∀y, {x | f x y}
– if f morphism: f x1 y1 and f x2 y2 and x1 R x2 imply y1 S y2

– then aft R implies aft S

• Ramsey (Coquand): aft R and aft S imply aft(R ∩ S)

– he deduces aft(R× S) and aft(R + S)

19

'

&

$

%

The Intuitionistic Ramsey Theorem (Coquand)

• By induction on the arity: aft R and aft S imply aft(R ∩ S)

• Curry-isomorphically: aft R and aft S imply aft(R× S)

• Dickson’s lemma: aft (≤N × · · · × ≤N)

• Classical Ramsey (not provable intuitionistically):

– for X : Type infinite and R : X →X → Prop define

– R0 n m ⇐⇒ n = m ∨ ¬R n m

– R1 n m ⇐⇒ n = m ∨R n m

– ¬afR0 implies ∃f : N→X injective and R fi fj for any i < j

– ¬afR1 implies ∃f : N→X inj. and ¬R fi fj for any i < j

– afR0 and afR1 implies af(R0 ∩R1) hence af(=X) (absurd)

20

'

&

$

%

Higman lemma and the subword relation

• Given R : rel2 X over a type X

• The subword relation <w
R : rel2 (listX) defined by 3 rules

[] <w
R []

l <w
R m

l <w
R b :: m

a R b l <w
R m

a :: l <w
R b :: m

• also write subwordR for <w
R

• Higman lemma (Fridlender 97, non informative version):

barl (goodR) [] implies barl (good (subwordR)) []

• Nearly the same proof works for barlt instead of barl

• But this proof cannot be generalized to finite trees...

21

'

&

$

%

The product tree embedding, Higman theorem

• Do not confuse with Higman lemma

• trees with same type for all arities: treeX = X × list(treeX)

• trees of breadth bounded by k ∈ N:

btree k X =
{
t
∣∣ tree fall (〈 |ll〉 7→ length ll < k) t

}
• any t ∈ T is t = 〈x|t1, . . . , tn〉 with n < k, x ∈ X and ti ∈ T

• for a relation R : rel2 X, we define (needs some work...)

s <×R ti

s <×R 〈xn|t1, . . . , tn〉

x R y s1 <×R t1, . . . , sn <×R tn

〈x|s1, . . . , sn〉 <×R 〈y|t1, . . . , tn〉

• Higman theorem: aft R implies aft(<
×
R) on btree k X

22

'

&

$

%

Higman theorem, an inductive proof

• Type theoretic version of (Veldman 2004)

• tree(Xn)n<k = T where T is lfp of T =

k−1∑
n=0

Xn × Tn

• one type Xn for each arity n < k

• any t ∈ T is t = 〈xn|t1, . . . , tn〉 with xn ∈ Xn and ti ∈ T

• for arity-indexed relations R : ∀n < k, rel2 (Xn), we define

s <h
R ti

s <h
R 〈xn|t1, . . . , tn〉

xn Rn yn s1 <h
R t1, . . . , sn <h

R tn

〈xn|s1, . . . , sn〉 <h
R 〈yn|t1, . . . , tn〉

• Higman thm.: (∀n < k, aft Rn) implies aft(<
h
R)

• by lexicographic induction on aft R0 × · · · × aft Rn

23

'

&

$

%

The homeomorphic embedding, Kruskal’s theorem

• one type X for all arities: treeX = X × list(treeX)

• for R : rel2 X, we define <?
R by nested induction

s <?
R ti

s <?
R 〈xn|t1, . . . , tn〉

xi R xj [s1, . . . , si] (subword<?
R) [t1, . . . , tj]

〈xi|s1, . . . , si〉 <?
R 〈xj |t1, . . . , tj〉

• hand-written elimination scheme (nested induction)

• Kruskal theorem: aft R implies aft(<
?
R)

24

'

&

$

%

Kruskal Thm, Tree Embedding upto k

• tree(Xn)n∈N = T where T is lfp of T =

∞∑
n=0

Xn × Tn

• k ∈ N and an arity-indexed relation R : ∀n ∈ N, rel2 (Xn)

• one Xn for each arity, but Xk = Xn as soon as n ≥ k

s <u
k,R ti

s <u
k,R 〈xn|t1, . . . , tn〉

n < k xn Rn yn s1 <u
k,R t1, . . . , sn <u

k,R tn

〈xn|s1, . . . , sn〉 <u
k,R 〈yn|t1, . . . , tn〉

k ≤ i xi Rk xj [s1, . . . , si] (subword<u
k,R) [t1, . . . , tj]

〈xi|s1, . . . , si〉 <u
k,R 〈xj |t1, . . . , tj〉

25

'

&

$

%

Kruskal’s Tree Theorem, inductive proof

• The recursive statement looks like:

if aft R0 and . . . and aft Rk then aft(<
u
k,R)

• The proof sketch (typed version of Veldman 2004)

– by induction on lexicographic product aft R0 × · · · × aft Rk

– it is difficult to implement this lexicographic product

– it is even more difficult with af instead of aft

– Veldman needs Brouver’s thesis, but we avoid it

• Kruskal’s Tree Theorem: aft R implies aft(<
?
R)

– use <u
k,R as a lower approximation for <?

R

– <u
0,R ⊆ <?

R in the case where n 7→ Rn is constant

26

'

&

$

%

Conclusion

• Computational content of aft or barlt (good R) []

– a collection of bounds on search-space for good pairs

– stored in a well-founded tree

• Computational content of theorems:

– Ramsey thm, Higman’s lemma and thm, Kruskal’s thm

– are bound transformation algorithms

• The Coq code: http://www.loria.fr/~larchey/Kruskal

– Free software, available, around 30 000 lines of code

– Higman’s lemma alone below 1000 lines

– Kruskal’s proof complete (both af and aft)

– but the code can and is still being improved

27

