σ-locales and Booleanization in Formal Topology

Francesco Ciraulo

Università degli Studi di Padova

"Tullio Levi-Civita"

CCC2017
26-30 June 2017
Inria-LORIA, Nancy, France,
EU, planet Earth, Solar system, Milky Way . . .
σ-frames and σ-locales
(see Alex Simpson’s talk)

A σ-frame is a poset with:

- countable joins (including the empty join)
- and finite meets (including the empty meet)

in which binary meets distribute over countable joins.

σLoc = category of σ-frames and the opposite of σ-frame homomorphisms
σ-frames and σ-locales

(see Alex Simpson’s talk)

A **σ-frame** is a poset with:
- countable joins (including the empty join)
- and finite meets (including the empty meet)

in which binary meets distribute over countable joins.

\[
\sigma \text{Loc} = \text{category of } \sigma\text{-frames and the opposite of } \sigma\text{-frame homomorphisms}
\]

Aim of this talk:

- to prove some facts about **σ-frames**
- in a constructive and predicative framework, namely Formal Topology,
 (which can be formalized in the Minimalist Foundation + ACω).

Francesco Ciraulo (Padua)
But, what is a countable set? (constructively)

Some classically equivalent definitions for a set S:

- S is either (empty or) finite or countably infinite;
- S is either empty or enumerable;
- Either $S = \emptyset$ or there exists $\mathbb{N} \rightarrow S$ (onto).
- ...
But, what is a countable set? (constructively)

Some classically equivalent definitions for a set S:

- S is either (empty or) finite or countably infinite;
- S is either empty or enumerable;
- Either $S = \emptyset$ or there exists $\mathbb{N} \rightarrow S$ (onto).
- ...

Definition

S is **countable** if there exists $\mathbb{N} \rightarrow 1 + S$ with S contained in the image

(see literature on Synthetic Topology: Andrej Bauer, Davorin Lešnik).

S is countable \iff there exists $D \rightarrow S$ with $D \subseteq \mathbb{N}$ detachable

(see Bridges-Richman Varieties... 1987).
The set of countable subsets

Given a set S, we write $\mathcal{P}_{\omega_1}(S)$ for the set of countable subsets of S.

$$\mathcal{P}_{\omega_1}(S) \cong (1 + S)^\mathbb{N}/\sim$$

where $f \sim g$ means $S \cap f[\mathbb{N}] = S \cap g[\mathbb{N}]$.

Some properties of $\mathcal{P}_{\omega_1}(S)$:

- $\mathcal{P}_{\omega_1}(S)$ is closed under countable joins (AC_ω).
- If equality in S is decidable, then $\mathcal{P}_{\omega_1}(S)$ is a σ-frame.

$\mathcal{P}_{\omega_1}(1)$ = "open" truth values (Rosolini's dominance) = free σ-frame on no generators = terminal σ-locale.
The set of countable subsets

Given a set S, we write $\mathcal{P}_{\omega_1}(S)$ for the set of countable subsets of S.

$$\mathcal{P}_{\omega_1}(S) \cong (1 + S)^\mathbb{N} / \sim$$

where $f \sim g$ means $S \cap f[\mathbb{N}] = S \cap g[\mathbb{N}]$.

Some properties of $\mathcal{P}_{\omega_1}(S)$

- $\mathcal{P}_{\omega_1}(S)$ is closed under countable joins (AC_{ω}).
- If equality in S is decidable, then $\mathcal{P}_{\omega_1}(S)$ is a σ-frame.
- $\mathcal{P}_{\omega_1}(1)$ = “open” truth values (Rosolini’s dominance)
 - = free σ-frame on no generators
 - = terminal σ-locale.
σ-locales in Formal Topology

Let L be a σ-locale.

For $a \in L$ and $U \subseteq L$ define

\[
\prec_L U \overset{\text{def}}{\iff} a \leq \bigsqcup W \text{ for some countable } W \subseteq U.
\]

\prec_L is a **cover relation** (Formal Topology), that is,

\[
\begin{align*}
 a \in U \quad &\quad a \prec U \quad \forall b \in U. b \prec V \\
 &\quad a \prec V \\
 a \prec U \quad &\quad a \land c \prec \{ b \land c \mid b \in U \} \\
 &\quad a \prec \{ \top \}
\end{align*}
\]
σ-locales in Formal Topology

Let \(L \) be a σ-locale.

For \(a \in L \) and \(U \subseteq L \) define

\[
a \triangleleft_L U \iff a \leq \bigvee W \text{ for some countable } W \subseteq U.
\]

\(\triangleleft_L \) is a cover relation (Formal Topology), that is,

\[
\begin{align*}
 a \in U & \quad \frac{}{a \triangleleft U} \\
 a \triangleleft U \quad \forall b \in U. b \triangleleft V & \quad \frac{a \triangleleft U}{a \triangleleft V} \\
 a \land c \triangleleft \{ b \land c \mid b \in U \} & \quad \frac{a \triangleleft U}{a \triangleleft \{ \top \}}
\end{align*}
\]

Proposition

\((L, \triangleleft_L, \land, \top)\) is (a predicative presentation of) the free frame over the σ-frame \(L \).

(cf. Banashewski, *The frame envelope of a σ-frame*, and Madden, *k-frames*)
Lindelöf elements in a frame

An element a of a frame F is **Lindelöf** if for every $U \subseteq F$

$$a \leq \bigvee U \implies a \leq \bigvee W$$

for some countable $W \subseteq U$.

Lindelöf elements are closed under countable joins (not under finite meets, in general).
Lindelöf elements in a frame

An element a of a frame F is **Lindelöf** if for every $U \subseteq F$

$$a \leq \bigvee U \implies a \leq \bigvee W$$

for some countable $W \subseteq U$.

Lindelöf elements are closed under countable joins (not under finite meets, in general).

σ-coherent frame =

- Lindelöf elements are closed under finite meets
 (and hence they form a σ-frame), and
- every element is a (non necessarily countable) join of Lindelöf elements.
\(\sigma\text{-coherent formal topologies}\)

\(\sigma\text{-coherent frames can be presented as formal topologies} (S, \triangleleft, \wedge, \top) \text{ where}\)

\[
a \triangleleft U \implies a \triangleleft \mathcal{W} \text{ for some countable } \mathcal{W} \subseteq U
\]
σ-coherent formal topologies

σ-coherent frames can be presented as formal topologies \((S, \triangleleft, \wedge, \top)\) where

\[
a \triangleleft U \implies a \triangleleft W \quad \text{for some countable } W \subseteq U
\]

Proposition

Given a σ-locale \(L\),

\((L, \triangleleft, \wedge, \top)\) is σ-coherent and

its σ-frame of Lindelöf elements is \(L\)

So σ-locales can be seen as σ-coherent formal topologies

(with a suitable notion of morphism).
Examples

Examples of σ-coherent formal topologies:

point-free versions of

- Cantor space $2^\mathbb{N}$
- Baire space $\mathbb{N}^\mathbb{N}$
- $S^\mathbb{N}$ with S countable.

So their Lindelöf elements provide examples of σ-locales.
Dense sublocales

A congruence \sim on a frame L is an equivalence relation compatible with finite meets and arbitrary joins.

The quotient frame L/\sim is a sublocale of L.

Some well-known fact about dense sublocales: the "intersection" of dense sublocales is always dense (!), hence every locale contains a smallest dense sublocale which turns out to be a complete Boolean algebra ("Booleanization"); the corresponding congruence $x \sim y$ is $\forall z (y \land z = 0 \iff x \land z = 0)$.

Francesco Ciraulo (Padua)

σ-FormalTopology

CCC2017 - Nancy
Dense sublocales

A congruence \sim on a frame L is an equivalence relation compatible with finite meets and arbitrary joins.

The quotient frame L/\sim is a sublocale of L.

L/\sim is dense if $(\forall x \in L)(x \sim 0 \Rightarrow x = 0)$

Some well-known fact about dense sublocales:

- the “intersection” of dense sublocales is always dense (!), hence
- every locale contains a smallest dense sublocale
- which turns out to be a complete Boolean algebra (“Booleanization”);
- the corresponding congruence $x \sim y$ is $\forall z(y \land z = 0 \iff x \land z = 0)$
Boolean locales are good but...

- non-trivial discrete locales are never Boolean
- Boolean locales have no points
- non-trivial Boolean locales are never overt

unless your logic is classical!

Recall that \((S, \triangleleft)\) is **overt** if there exists a predicate \(Pos\) such that

\[
\frac{Pos(a)}{\exists b \in U. Pos(b)} \quad \frac{\exists b \in U. Pos(b)}{a \triangleleft \{b \in U \mid Pos(b)\}}
\]

INTUITION: \(Pos(a)\) is a positive way to say \(a \neq 0\).
A positive alternative to Booleanization

Given \((S, \triangleleft, Pos)\), the formula

\[
\forall z [Pos(x \land z) \iff Pos(y \land z)]
\]

defines a congruence, hence a sublocale, with the following properties:

- it is the smallest *strongly* dense sublocale (as defined by Johnstone);
- it is overt;
- it can be discrete (e.g. when the given topology is discrete).

These are precisely Sambin’s overlap algebras.

A similar construction applies to \(\sigma\)-locales...
A congruence \sim on a σ-frame L is an equivalence relation compatible with finite meets and countable joins.

The quotient σ-frame L/\sim is a σ-sublocale of L.

L/\sim is dense if $(\forall x \in L)(x \sim 0 \Rightarrow x = 0)$

We call a σ-locale overt if its corresponding (σ-coherent) formal topology is overt.
The smallest strongly-dense σ-sublocale

Proposition

Given an overt σ-locale L, the formula $\forall z [\text{Pos}(x \land z) \iff \text{Pos}(y \land z)]$ defines the smallest strongly-dense σ-sublocale of L.

CLASSICALLY: these are Madden’s d-reduced σ-frames.
CONSTRUCTIVELY: they are σ versions of overlap algebras.
The smallest strongly-dense σ-sublocale

Proposition

Given an overt σ-locale L, the formula $\forall z [\text{Pos}(x \land z) \iff \text{Pos}(y \land z)]$ defines the smallest strongly-dense σ-sublocale of L.

CLASSICALLY: these are Madden’s d-reduced σ-frames.
CONSTRUCTIVELY: they are σ versions of overlap algebras.

Proposition

A σ-locale L is a σ-overlap-algebra if and only if its corresponding (σ-coherent) formal topology is an overlap algebra.

CLASSICAL reading: L is d-reduced (Madden) if and only if the free frame over L is a complete Boolean algebra.

References

Merci beaucoup!